## Changeover Switching solutions

 Transfer Switching Equipment from 40 to 6300 A
## 2015



## Contents

| The SOCOMEC Group . | p. 4 to 9 |
| :---: | :---: |
| The ATySrange: automatic and motorised transfer switches | p. 11 |
| ATyS selection guide | p. 12 |
| SOCOMEC products | p. 14 |
| TSE Technical Guide | p. 110 |
| Index.................. | p. 130 |

Manual transfer switches


Modular and motorised transfer switches
From 40 to 160 A


Motorised transfer switches
From 40 to 3200 A


ATyS $p$
p. 66

Universal N/E controller
Automatic control of different switching technologies: circuit breakers, contactors, switches.


UL product range


## Enclosed solution

> SOCOMEC offers a range of pre-equipped enclosures in steel. More information is available in the accessory pages of the different products.
A complete solution is also available to ensure power supply continuity.


## ATyS d H

Remotely operated transfer switches for applications from 4000 to 6300 A.
p. 84


## An independent manufacturer

The benefit of a specialist

Founded in 1922, SOCOMEC is an industrial group with a workforce of 3000 people. Our core business - the availability, control and safety of low voltage electrical networks with increased focus on our customers' power performance.

## The culture of independence

The SOCOMEC Group's independence ensures control over its own decision-making, respecting the values advocated by its own family shareholders and shared by its employees.
With around 30 subsidiaries located on all five continents, SOCOMEC pursues international development by targeting industrial and service applications where the quality of its expertise makes all the difference.

## The spirit of innovation

As undisputed specialists in UPS systems, mains supply changeover, power conversion and measurement, SOCOMEC dedicates nearly $10 \%$ of its turnover to R\&D. As a result the Group can achieve its ambition of always being one technological step ahead.

## The vision of a specialist

As a manufacturer with complete control over its technological processes, SOCOMEC is quite unlike the more general providers. The Group is constantly improving its fields of expertise in order to offer its clients increasingly customised, appropriate solutions.


## A flexible manufacturing structure

Backed by two European centres of excellence (France and Italy), the Group also benefits from competitive production sites such as Tunisia and locations in the major emerging markets (India and China).
These sites have all implemented a system of continuous improvement based on Lean Management principles, and are therefore in a position to provide high levels of quality, and meet the deadlines and cost requirements expected by customers.

## The focus on service

Our manufacturer's expertise naturally extends to a complete range of services designed to facilitate the research, implementation and operation of our solutions. Our service teams have built their reputation on reassuring guidance, flexible skills and reactivity.

## Responsible growth

As a Group which is open to all cultures and firmly committed to human values, SOCOMEC promotes employee initiative and commitment. Working relationships are based on the idea of partnerships and respect for shared ethics. Through the company's commitment to achieving harmonious, lasting development, SOCOMEC fully embraces its responsibilities not only towards its shareholders, employees, customers and partners, but also towards society as a whole and its environment.
SOCOMEC has been a signatory to the Global Compact since 2003.

# Four key applications: the know-how of a specialist 

Critical Power
Ensuring the availability of high-quality power for critical applications.

Thanks to the company's wide range of continuously evolving products, solutions and services, SOCOMEC are experts in the three essential technologies that can ensure the high availability of supply to critical facilities and buildings i.e.:

- uninterruptible power supplies (UPS) that provide high-quality power and reduce
distortion and interruptions to the mains supply due to their power storage backup,
- changeover of high availability sources to transfer supply to an operational backup source,
- continuous monitoring of installation facilities to prevent failures and reduce operating losses.



## Power Control \& Safety

Managing power and protecting individuals and property.

SOCOMEC's expertise in this domain is unquestionable; the company is an undisputed leader in power switching and changeover functions, and has been a specialist manufacturer of electrical equipment since 1922. The company has long defended the benefits of fuse protection for individuals and
property, and has become a major player in cutting-edge technology such as the monitoring and detection of insulation defects. SOCOMEC guarantees solutions and services which are both relevant and efficient.


Solar Power
Guaranteeing the safety and durability of photovoltaic (PV) facilities.

As experts in the solar energy equipment field, SOCOMEC has all the specialist know-how for implementing key strategic functions in on-grid and off-grid PV facilities, including:

- safety, through specially designed switch disconnectors to cut the DC current generated by solar panels regardless of the facility configuration and operating conditions,
- the reliability of DC facilities thanks to solutions preventing the degradation
of insulation and electric arc failure in DC current,
- control of very high-efficiency energy conversion, via PV inverters, to transform all energy generated by the solar panels into power to be consumed locally or re-injected into the national grid,
- PV production and energy storage solutions for on-grid and off-grid applications.



## Energy Efficiency

Improving building and facility energy efficiency.

SOCOMEC solutions, ranging from sensors to the wide choice of innovative, modular software packages, are driven by experts in energy efficiency. They meet the essential requirements of managers or operators of tertiary, industrial or local authority buildings, and make it possible to:

- measure power consumption, identify sources of excess consumption, and raise occupant awareness,
- limit reactive energy and prevent associated tariff penalties,
- use the best tariffs, check supplier invoicing and accurately distribute energy bills amongst consumer entities.



## Services \& Technical Assistance

## the manufacturer's guarantee

Over several decades, SOCOMEC Systems have acquired a distinguished reputation in the control, safety and performance of low voltage electrical distribution equipment. Our manufacturer's expertise naturally extends to a complete offer of services designed to help you select, implement and get the most out of our solutions.


## Customised support...

## Assessment and sizing

Depending on your requirements, our experts collect and analyse all the relevant data in order to recommend the system best adapted to your installation.

## Commissioning

Installation of your equipment is carried out by a specialist, and is totally compatible with and adapted to your use.

## Maintenance

A wide range of preventive or corrective maintenance options designed to suit your installation and its environment, and to ensure continuity of service of your electrical networks.

## Training

You will receive training, specially adapted to your needs, in order to familiarise yourself with our equipment and enable you to use it to your best advantage.

## ... to ensure you a successful project

## Source inversion in complete safety

Changeover switches are strategic components that ensure continuity of service of supplies In order to guarantee complete operational safety, we will implement our range of innovative source transfer solutions.

## Your energy consumption efficiently and comprehensively managed

Monitoring of energy consumption within a production unit is one of your primary operational considerations From the preliminary assessment of your installation to the adaptation of the software, dedicated SOCOMEC experts are on hand to assist you throughout the entire energy performance process

## Effective insulation monitoring for your electrical installation

To ensure that your fault monitoring and location system operates to its optimum capacity, our team of specialists perform all operations on site.
This means that you benefit from renowned expertise, as well as solutions tailored to the specific monitoring requirements of your electrical installation.

The control of reactive energy on your electricity bill
In terms of power factor correction, the support of a specialist is essential to appropriately size your system and meet the desired efficiency.
SOCOMEC will help you to make the right choices and therefore to benefit from a longterm solution. A real return on investment.
For more information, please see pages
"Reactive energy power factory correction'.


# A cutting-edge laboratory 

## The backing of an expert

Since 1965, the Pierre Siat test laboratory has used its expertise to guarantee the reliability and conformity of SOCOMEC products and solutions. Our customers are also welcome...


## A decisive link

Located at the Company's headquarters in Benfeld (France), the Pierre Siat test laboratory is one of SOCOMEC's main quality pillars: its contribution to the development, qualification and certification phases plays a decisive role in the process leading to the creation of a product or solution.

## Global scale

This totally independent laboratory is recognised by the major certification bodies worldwide: a member of the ASEFA ${ }^{(1)}$ and the LOVAG ${ }^{(2)}$, it is accredited by COFRAC ${ }^{(3)}$, UL (CTDP ${ }^{(4)}$ ), CSA (shared certification) and KEMA (SMT/WMT ${ }^{(5)}$ ). It also works in partnership with numerous international certification organisations ${ }^{(6)}$. The quality and safety requirements specific to each country are therefore fully taken into account.

## Specialist facilities

With its 100 MVA (Idc 100 kA rms 1 s) short-circuit platform, three 10 kA overload platforms and numerous other test instruments in facilities covering $1500 \mathrm{~m}^{2}$, the Pierre Siat laboratory is currently the $2^{\text {nd }}$ French power laboratory. It combines expertise in electricity and mechanics, pneumatics and computing.

## Ongoing commitment

To adapt to the increasingly demanding standards and ever more innovative and high-performance products, the Pierre Siat laboratory is permanently extending the scope of its tests, investing whenever necessary in new equipment.

## A vast range of tests

The laboratory submits all SOCOMEC products and solutions (including those in enclosures) to numerous tests in the following fields:

- functional: component resistance and operating tests,
- dielectric: immunity to interference, dielectric insulation, overvoltage, overcurrent,
- mechanical: endurance and mechanical shocks, etc.,
- environment: functional or electrical tests under extreme conditions (temperatures, salt spray, etc.), vibrations,
- AC/DC endurance: in operation and under controlled temperatures (arcs, LV/HV power cuts, etc.),
- temperature rise,
- electromagnetic compatibility (EMC),
- metrology,
- safety: flammability, etc.

Conducted during the design and production phases, these tests guarantee the long-term reliability of the equipment sold.

## Customized services

These test facilities and expertise are also available to our partners who require assistance with the qualification and certification of their products or equipment.


We issue certificates of conformity and performance declarations upon request.
For more information, visit our web site: www.socomec.com/testing-laboratory_en.html
(1) Association des Stations d'Essais Françaises
d'Appareils électriques basse tensio (French association
of low voltage electrical equipment test stations)
(2) Low Voltage Agreement Group
(3) Comité Français d'Accréditation (French accreditation body)
(4) Client test data programme
(5) Supervised Manufacturer's testing/Witnessed manufacturer's testing
(6) KEMA, CEBEC, UL, CSA, ASTA, Lloyd's Register of Shipping, Bureau Véritas, BBJ-SEP, EZU, GOST-R, etc.

## www.socomec.com

## to be directly connected to our solutions


(1) Find out about products, services and systems meeting the requirements of applications for which we have a real expertise
(2) Download documentations, pictures, logos and CAD filesFind and contact the nearest Socomec contactFind answers to technical questions (FAQ)Find out about our job offers
6
Get informed about our news: products, events and advice


## 100\% mobility

Access multimedia contents from your smartphone by scanning the codes available in our catalogues or documentations.

How?

1. Download
a QR code application from your mobile phone (QR Code Sanner Pro, Mobiletag, ScanLife flashcode, etc.).

## 2. Scan


3. Browse!


Download section on the Socomec website


Banners Software
Selection guides Photos Brochures Videos User guides Tutorials

## Safety and reliability for your switching applications

A world-renowned manufacturer and undisputed leader in changeover switching technology, SOCOMEC constantly innovates to ensure ever more efficient continuity in electrical distribution.

From the 'small' COMO C manual transfer switch (from 25 A) to the ATyS p automatic transfer switch (up to 3200 A), our standard range of transfer switches covers most applications.

## Services \& Technical Assistance

Our Services \& Technical Assistance department will assess and define your installation, commission selected equipment and train personnel in charge of its use.
For more information, please get in touch with your usual SOCOMEC contact.

## Secure switching for all your applications



## The complete ATS Bypass solution

From 40 to 3200 A, this solution enables the automatic transfer switch to be completely isolated while guaranteeing the continuity of the installation's power supply.


## $\boldsymbol{A T y} \boldsymbol{S}$ range: Three ranges of automatic transfer switches for an adapted solution to your application

## RTSE

According to standard IEC 60947-6-1, RTSE products are Remotely operated Transfer Switching Equipment. They consequently require an external controller to transmit switching controls.

| Type of power supply | Single DC power supply | Single AC power supply | Dual AC power supply |
| :---: | :---: | :---: | :---: |
| ATyS Mrange <br> 40-160 A: modular | - | - |  |
| ATyS S range <br> 40-125 A: back to back |  |  | ATySdS p. 52 |
| ATyS range <br> 125-3200 A: back to back | - |  |  |

## ATSE

According to standard IEC 60947-6-1, ATSE products are Automatic Transfer Switching Equipment. Contrary to RTSE products, they have an integrated controller. This means these products can monitor the availability of source, start the genset if required and can also automatically transfer the load to the available power supply source.

| Application type | Mains/Mains | Mains/Genset | Enhanced applications |
| :---: | :---: | :---: | :---: |
| ATyS Mrange <br> 40-160 A: modular |  |  |  |
| ATyS range <br> 125-3200 A: back to back | ATyS $t$ <br> p. 64 | ATyS $g$ <br> p. 64 | ATyS $p$ <br> p. 66 |

## Selection guide

Remotely operated and automatic transfer switches

## ATyS



Type of power supply
Power supply 12,24 or 48 VDC Single power supply 230 VAC Dual power supply 230 VAC



Connection of remote control interface
D10
D20

Application

| Mains/Mains | -(1) | -(1) | -(1) | -(1) | - ${ }^{(1)}$ | - ${ }^{11}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mains-Genset | -(1) | -(1) | -(1) | -(1) | -(1) | -1) |
| Genset/Genset | - ${ }^{(1)}$ | -(1) | -(1) | -(1) | - ${ }^{(1)}$ | - ${ }^{11}$ |

## Configuration

Configuration using potentiometers and dip switches
Configuration using display and keyboard
Voltage and frequency auto-configuration
Functions


Supervision
Programming of genset startup
RS485 communication
Ethernet communication
Webserver via Ethernet module
Data logging
(1) with an external controller
(2) Only on two pole versions
(3) Only avaiable on the version with COM
(4) Configurable output


## SIRCOVER

Manual transfer switches
from 125 to 3200 A


Function
SIRCOVER AC are manual multipolar transfer switches with positive break indication.
The family includes three ranges:

- SIRCOVER AC for open transition switching (I-0-II),
- SIRCOVER for overlapping contact switching (I-I+II-II), and
- SIRCOVER Bypass. This version is a combination of three interlocked switches enabling use with $3+6$ poles or $4+8$ poles.
They provide switching, source inversion and transfer under load for two low voltage power circuits, as well as their safety isolation by double breaking per pole.


## Advantages

## A complete product range

Three versions of the SIRCOVER are available to ensure compatibility with the maximum number of applications: SIRCOVER AC (I-O-II) with improved on load switching characteristics and isolation position, SIRCOVER with overlapping contacts (II-III-II) and a BYPASS version.

## Easy connections

A copper bar connection kit is available for 2000 to 3200 A ratings. It enables various types of connection: flat or edgewise connection with top or bottom bridging.

## Stable positions

SIRCOVERs have three stable positions which are not affected by voltage drops or vibrations, thus protecting your load against network interference.

## Improved on load switching

Thanks to its AC-23 and AC-33 characteristics, which are tested in accordance with standards IEC 60947-3 and IEC 60947-6-1, the SIRCOVER AC enables secure and reliable switching on all types of load, without the need for pre-breaking upstream.

> The solution for
> > Manufacturing industry
> > Power distribution


## Strong points

$>$ A complete range
> Easy connections
> Stable positions

## Conformity to standards



## Approvals and certifications ${ }^{(1)}$

## (CC)

(1) Product reference on request.

## What you need to know

- SIRCOVER (I-0-II) switches have 3 stable positions, and are available as 3 or 4 pole devices from 125 to 3200 A. They are available enclosed in a steel or polyester enclosure from 125 to 1600 A.
- SIRCOVER switches with overlapping contacts $(I-I+I I-I I)$ are available as 3 or 4 pole devices from 125 to 1600 A .
- With 3 stable positions (I-0-II), SIRCOVER

Bypass are a combination of three
interlocked switches enabling the use with
$3+6$ poles or $4+8$ poles from 125 to 1600 A.

- All SIRCOVER can be utilised with a direct front or external operation handle.

- Copper bar connection kits enable the connection between the two power terminals of the same pole (fig. 1 \& fig.2) and the bridging of the poles on the top or bottom side of the switch (fig.3), for ratings 2000, 2500 and 3200 A.


Top or bottom flat connection


Edgewise connection
Top or bottom


Top or bottom bridging connection

## SIRCOVER

Manual transfer switches
from 125 to 3200 A

References
SIRCOVER AC I-0-II

| Rating (A) / <br> Frame size | No. of poles | Switch body | Direct handle | External handle | Shaft for external handle | Bridging bars | Auxiliary contact | Terminal shrouds | Terminal screens |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 125 A / B3 | 3 P | 41AC 3013 | $\begin{gathered} \text { J2 type } \\ \text { Blue } \\ 11221111 \\ \text { Red } \\ 11231111 \end{gathered}$ | S2 type Black IP55 14212113 Black IP65 1423 2113 $^{(1)}$ | $\begin{gathered} 200 \mathrm{~mm} \\ 14001020 \\ 320 \mathrm{~mm} \\ 14001032^{(1)} \end{gathered}$ | $\begin{gathered} 3 P \\ 41093019 \\ 4 P \\ 41094019 \end{gathered}$ | $\begin{aligned} & 1^{\text {st/ } / 2^{\text {nd }} \text { contact }} \\ & \text { NO/NC } \\ & \mathbf{4 1 0 9 \mathbf { 0 0 2 1 }} \end{aligned}$ | $\begin{gathered} 3 \mathrm{P} \\ 26943014^{(3)(4)} \\ 4 \mathrm{P} \\ 26944014^{(3)(4)} \end{gathered}$ | $\begin{gathered} 3 P \\ 15093012 \\ 4 P \\ 15094012 \end{gathered}$ |
|  | 4 P | 41AC 4013 |  |  |  |  |  |  |  |
| 160 A / B3 | 3 P | 41AC 3016 |  |  |  |  |  |  |  |
|  | 4 P | 41AC 4016 |  |  |  |  |  |  |  |
| 200 A / B3 | 3 P | 41AC 3020 |  |  |  |  |  |  |  |
|  | 4 P | 41AC 4020 |  |  |  |  |  |  |  |
| 250 A / B4 | $3 P$ | 41AC 3025 |  |  |  | 41093025 |  | $\begin{gathered} 3 \mathrm{P} \\ 26943021^{(3)(4)} \\ 4 \mathrm{P} \\ 26944021^{(3) / 4)} \end{gathered}$ | $\begin{gathered} 3 P \\ 15093025 \\ 4 P \\ 15094025 \end{gathered}$ |
|  | 4 P | 41AC 4025 |  |  |  | 41094025 |  |  |  |
| 315 A/B4 | 3 P | 41AC 3031 |  |  |  | $\begin{gathered} 3 P \\ 41093039 \\ 4 P \\ 41094039 \end{gathered}$ |  |  |  |
|  | 4 P | 41AC 4031 |  |  |  |  |  |  |  |
| 400 A / B4 | $3 P$ | 41AC 3040 |  |  |  |  |  |  |  |
|  | 4 P | 41AC 4040 |  |  |  |  |  |  |  |
| 500 A / B5 | 3 P | 41AC 3050 |  |  |  | 41093050 |  | $\begin{gathered} 3 \mathrm{P} \\ 26943051^{(3)(4)} \\ 4 \mathrm{P} \\ 26944051^{(3)(4)} \end{gathered}$ | $\begin{gathered} 3 \mathrm{P} \\ 15093063^{(5)} \\ 4 \mathrm{P} \\ 15094063^{(5)} \end{gathered}$ |
|  | 4 P | 41AC 4050 |  |  |  | 41094050 |  |  |  |
| $630 \mathrm{~A} / \mathrm{B} 5$ | $3 P$ | 41AC 3063 |  |  |  | 41093063 |  |  |  |
|  | 4 P | 41AC 4063 |  |  |  | 41094063 |  |  |  |
| $800 \mathrm{~A} / \mathrm{B6}$ | 3 P | 41AC 3080 | $\begin{gathered} \text { C1 type } \\ \text { Black } \\ 27997052 \end{gathered}$ | S4 type Black IP65 14433113 | $\begin{gathered} 200 \mathrm{~mm} \\ 14011520 \\ 320 \mathrm{~mm} \\ 14011532^{(1)} \end{gathered}$ | $\begin{gathered} 3 P \\ 41093080 \\ 4 \mathrm{P} \\ 41094080 \end{gathered}$ |  |  | $\begin{gathered} 3 P \\ 15093080^{(5)} \\ 4 P \\ 15094080^{(5)} \end{gathered}$ |
|  | 4 P | 41AC 4080 |  |  |  |  |  |  |  |
| 1000 A / B6 | 3 P | 41AC 3100 |  |  |  |  |  |  |  |
|  | 4 P | 41AC 4100 |  |  |  |  |  |  |  |
| 1250 A / B6 | $3 P$ | 41AC 3120 |  |  |  | 41093120 |  |  |  |
|  | 4 P | 41AC 4120 |  |  |  | 41094120 |  |  |  |
| 1600 A / B7 | $3 P$ $4 P$ | $41 A C$ 3160 $41 A C$ 4160 |  |  |  | 41093160 41094160 |  |  | $\begin{gathered} 3 P \\ 15093160^{(5)} \\ 4 \mathrm{P} \\ 1509 \mathbf{4 1 6 0}^{(5)} \end{gathered}$ |
| 2000 A / B8 | 3 P | 41AC 3200 | $\begin{gathered} \text { S5 type } \\ \text { Black } \\ 27997042 \end{gathered}$ | S5 type Black IP65 14538113 | $\begin{gathered} 200 \mathrm{~mm} \\ 27993015 \\ 320 \mathrm{~mm} \\ 27993018^{(1)} \\ 450 \mathrm{~mm} \\ 27993019 \end{gathered}$ | (6) | $1^{\text {st }} / 2^{\text {nd }}$ contact NO/NC included |  | included |
|  | 4 P | 41AC 4200 |  |  |  |  |  |  |  |
| 2500 A / B8 | $3 P$ | 41AC 3250 |  |  |  |  |  |  |  |
|  | 4 P | 41AC 4250 |  |  |  |  |  |  |  |
| 3200 A / B8 | 3 P | 41AC 3320 |  |  |  |  |  |  |  |
|  | 4 P | 41AC 4320 |  |  |  |  |  |  |  |

(1) Standard.
(2) 2 pieces: one for position I and one for position II.
(3) To fully shroud front, rear, top and bottom 4 references required
(4) To shroud front switch top and bottom 2 references required.
(5) 2 pieces: one for top side and another for bottom side.
(6) See "Copper bar connection kits" page 20.

## Also available

SIRCOVER AC I-I+II-II

From 125 to 1600 A, these manual transfer switches are used for switching from one normal source to a backup in open transition
conditions. However both sources must be synchronous.

Reference: 46AC XYYY

| $\mathbf{X = \text { number of poles }}$ | $\mathbf{Y}=$ rating $(\mathbf{A})$ |  |
| :--- | :--- | :--- |
| $3: 3$ poles | $013: 125$ | $050: 500$ |
| $4: 4$ poles | $016: 160$ | $063: 630$ |
|  | $020: 200$ | $080: 800$ |
|  | $025: 250$ | $100: 1000$ |
|  | $031: 315$ | $120: 1250$ |
|  | $040: 400$ | $160: 1600$ |

## SIRCOVER AC BY-PASS

From 125 up to 1600 A, these manual transfer switches enable the isolation and the bypassing of the backup source, using an uninterruptible power supply for instance, thanks to 3 compact interlocked switches in a single product.

Reference: 4ZAC XYYY

| $\mathbf{Z}=$ switching type | $\mathbf{X}=$ number of poles | $\mathbf{Y}=$ rating (A) |  |
| :--- | :--- | :--- | :--- |
| $1: \mid-0-\boldsymbol{I}$ | $7: 3+6$ poles | $013: 125$ | $050: 500$ |
| $6:\|-\|+\\|-\\|$ | $9: 4+8$ poles | $016: 160$ | $063: 630$ |
|  |  | $020: 200$ | $080: 800$ |
|  |  | $025: 250$ | $100: 1000$ |
|  |  | $031: 315$ | $120: 1250$ |
|  |  | $040: 400$ | $160: 1600$ |



## SIRCOVER

Manual transfer switches
from 125 to 3200 A

## Accessories

## Direct operation handle



## External operation handle

## Use

Door interlocked external front operation handles include an escutcheon, are padlockable and must be utilised with an extension shaft.

(1) IP: protection degree according to IEC 60529 standard.

## Alternative S type handle cover colours

## Use

For single lever handles S1, S2, S3 type and for double lever handle S4 type.
Other colours: please consult us.

| Colour | To be ordered <br> in multiples of | Handle | Reference |
| :--- | :---: | :---: | :---: |
| Light grey | 50 | S2, S3 type | $1401 \mathbf{0 0 0 1}$ |
| Dark grey | 50 | S2, S3 type | $1401 \mathbf{0 0 1 1}$ |
| Light grey | 50 | S4 type | $1401 \mathbf{0 0 3 1}$ |
| Dark grey | 50 | S4 type | $1401 \mathbf{0 0 4 1}$ |



## S type handle adapter

## Use

Enables S type handles to be fitted in place of existing older style SOCOMEC handles. Adapter can also be utilised as a spacer to increase the distance between the panel door and the handle lever.

## Dimensions

Adds 12 mm to the depth.

## Shaft guide for external operation

Use
Required for shaft lengths over 320 mm .
To guide the shaft extension into the external handle.
This accessory enables the handle to engage the extension shaft with a misalignment of up to 15 mm .

| Description | Reference |
| :--- | :---: |
| Shaft guide | 14290000 |



Shaft for external handle
Use
Standard lengths: Other lengths: please consult us.

- 200 mm ,
- 320 mm ,
- 450 mm.

| SIRCOVER AC I-0-II and I-I+II-II |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Rating (A) | Frame size | Length (mm) | Dimension X (mm) | Reference |
| 125... 400 | B3 ... B4 | 200 | 210... 310 | 14001020 |
| $125 . .400$ | B3 ... B4 | 320 | 210 ... 430 | 14001032 |
| $500 . . .630$ | B5 | 200 | $280 . . .390$ | 14001020 |
| $500 . . .630$ | B5 | 320 | $280 \ldots 510$ | 14001032 |
| $800 . . .1600$ | B6... B7 | 200 | 425 ... 577 | 14011520 |
| $800 . . .1600$ | B6... B7 | 320 | $425 . . .697$ | 14011532 |
| 2000 ... 3200 | B8 | 200 | 653 ... 803 | 27993015 |
| 2000 ... 3200 | B8 | 320 | $653 . . .923$ | 27993018 |
| 2000 ... 3200 | B8 | 450 | 653 ... 1053 | 27993019 |



| SIRCOVER AC BYPASS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Rating (A) | Frame size | Length (mm) | Dimension X (mm) | Reference |
| 125... 200 | B3 | 200 | $320 . . .450$ | 14001020 |
| 125... 200 | B3 | 320 | $320 . . .570$ | 14001032 |
| $250 . . .400$ | B4 | 200 | $298 . . .420$ | 14011520 |
| 250... 400 | B4 | 320 | $298 . .540$ | 14011532 |
| 500... 630 | B5 | 200 | 417 ... 539 | 14011520 |
| $500 . . .630$ | B5 | 320 | 417 ... 659 | 14011532 |
| $800 \ldots 1600$ | B6... B7 | 200 | 550 ... 680 | 27993015 |
| $800 \ldots 1600$ | B6... B7 | 320 | 550 ... 800 | 27993018 |
| $800 \ldots 1600$ | B6... B7 | 450 | $550 \ldots 930$ | 27993019 |

## Bridging bars

## Use

For creating a common connection between switches I \& II, on the top or bottom side of the SIRCOVER, to enable, for example, the load to be fed from either incoming source (I or II).
For SIRCOVER Bypass, two sets of bridging bars are required (3/6 pole or 4/8 pole switch).

| Rating (A) | Frame size | No. of poles | Section $(\mathbf{m m})$ | Reference |
| :--- | :---: | :---: | :---: | :---: |
| $125 \ldots 200$ | B3 | $3 P$ | $20 \times 2.5$ | 41093019 |
| $125 \ldots 200$ | B3 | $4 P$ | $20 \times 2.5$ | 41094019 |
| 250 | B4 | $3 P$ | $25 \times 2.5$ | 41093025 |
| 250 | B4 | $4 P$ | $25 \times 2.5$ | 41094025 |
| $315 \ldots 400$ | B4 | $3 P$ | $32 \times 5$ | 41093039 |
| $315 \ldots 400$ | B4 | $4 P$ | $32 \times 5$ | 41094039 |
| 500 | B5 | $3 P$ | $32 \times 5$ | 41093050 |
| 500 | B5 | $4 P$ | $32 \times 5$ | 41094050 |
| 630 | B5 | $3 P$ | $50 \times 5$ | 41093063 |
| 630 | B5 | $4 P$ | $50 \times 5$ | 41094063 |
| $800 \ldots 1000$ | B6 | $3 P$ | $50 \times 6$ | 4109 3080 |
| $800 \ldots 1000$ | B6 | $4 P$ | $50 \times 6$ | 41094080 |
| 1250 | B6 | $3 P$ | $60 \times 8$ | 41093120 |
| 1250 | B6 | $4 P$ | $60 \times 8$ | 41094120 |
| 1600 | B7 | $3 P$ | $90 \times 10$ | 41093160 |
| 1600 | B7 | 4P | $90 \times 10$ | $4109 \mathbf{4 1 6 0}$ |




SIRCOVER BYPASS


## SIRCOVER

Manual transfer switches
from 125 to 3200 A

## Accessories (continued)

## Copper bar connection kits from 2000 to 3200 A - SIRCOVER

Use
Enables:

- connection between the two power terminals of the same pole for 2000 to 3200 A ratings (Fig. 1 and Fig 2)
- top or bottom bridging connection (Fig. 3).

For 3200 A rating, the connection pieces (part A) are delivered bridged from factory. Bolt sets must be ordered separately.

Further details for these specific accessories are available in the user guide downloadable from www.socomec.com.


(1) Example for 3 pole device equipped upstream only: Order 3 times
the indicated quantities.
(2) Bolt set is provided with the accessories.

Top or bottom bridging connection - Fig. 3

| Rating (A) | Frame size | Piece | Quantity to order per pole ${ }^{(1)}$ | Reference |
| :---: | :---: | :---: | :---: | :---: |
| 2000 ... 2500 | B8 | Connection - part A | 2 | 26191200 |
| 2000 ... 2500 | B8 | Bolt set - part B | 2 | 26991200 |
| 2000 ... 2500 | B8 | Bar - part E | 1 | 4109 0320 ${ }^{(2)}$ |
| 2000 ... 2500 | B8 | T piece - part C | 1 | 2629 1200 ${ }^{(2)}$ |
| 3200 | B8 | Connection - part A |  | included |
| 3200 | B8 | Bolt set - part B | 2 | 26991200 |
| 3200 | B8 | Bar - part E | 1 | 4109 0320 ${ }^{(2)}$ |
| 3200 | B8 | T piece - part C | 1 | 2629 1200 ${ }^{(2)}$ |

(1) Example for 3 pole device equipped upstream only: Order 3 times the indicated quantities.
(2) Bolt set is provided with the accessories.

Auxiliary contact

## Use

Pre breaking and signalling of positions I and II: 1 or $2 \mathrm{NO} / \mathrm{NC}$ auxiliary contacts in each position.
Low level auxiliary contacts: please consult
us.
Connection to the control circuit
By 6.35 mm fast-on terminal.
Electrical characteristics
30000 operations.

Characteristics

| Rating (A) | Frame size | Nominal current (A) | Operating current $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 250 \text { VAC } \\ \text { AC-13 } \end{gathered}$ | $\begin{gathered} 400 \text { VAC } \\ \text { AC-13 } \end{gathered}$ | $\begin{gathered} 24 \text { VDC } \\ \text { DC-13 } \end{gathered}$ | $\begin{gathered} 48 \text { VDC } \\ \text { DC-13 } \end{gathered}$ |
| 125... 3200 | B3 ... B8 | 16 | 12 | 8 | 14 | 6 |


| NO/NC changeover contact |  |  |  |
| :--- | :---: | :---: | :---: |
| Rating (A) | Frame size | Contact(s) | Reference |
| $125 \ldots 1600$ | B3 $\ldots$ B7 | $1^{\text {st } / 2^{\text {nd }}}$ | $4109 \mathbf{0 0 2 1}$ |
| $2000 \ldots 3200$ | B8 | $1^{\text {st/ } / 2^{\text {nd }}}$ | included |

## Terminal shrouds

## Use

Protection against direct contact with terminals or connecting parts.

## Advantage

Perforations allow remote thermographic inspection without the need to remove the shrouds.

| Rating (A) | Frame size | No. of poles | Position | Reference |
| :---: | :---: | :---: | :---: | :---: |
| $125 . .200$ | B3 | 3 P | top / bottom / front (I) / rear (II) | $26943014{ }^{(1)(2)}$ |
| $125 \ldots 200$ | B3 | 4 P | top / bottom / front (I) / rear (II) | 2694 4014 ${ }^{(1)(2)}$ |
| $250 . . .400$ | B4 | $3 P$ | top / bottom / front (I) / rear (II) | 2694 3021 ${ }^{(1)(2)}$ |
| $250 . . .400$ | B4 | 4 P | top / bottom / front (I) / rear (II) | 2694 4021 ${ }^{(1)(2)}$ |
| $500 \ldots 630$ | B5 | $3 P$ | top / bottom / front (I) / rear (II) | 2694 3051 ${ }^{(1)(2)}$ |
| $500 \ldots 630$ | B5 | 4 P | top / bottom / front (I) / rear (II) | 2694 4051 ${ }^{(1)(2)}$ |


(1) To shroud front switch top and bottom 4 references required for a SIRCOVER and 6 references for a SIRCOVER Bypass.
(2) To shroud front switch top and bottom 2 references required for a SIRCOVER and a SIRCOVER Bypass.

Terminal screens

## Use

Top and bottom protection against direct contact with terminals or connection parts.

| Rating (A) | Frame size | No. of poles | Position | Reference |
| :---: | :---: | :---: | :---: | :---: |
| 125... 200 | B3 | 3 P | top / bottom | 15093012 |
| 125 ... 200 | B3 | 4 P | top / bottom | 15094012 |
| 250 ... 400 | B4 | 3 P | top / bottom | 15093025 |
| 250 ... 400 | B4 | 4 P | top / bottom | 15094025 |
| $500 \ldots 630$ | B5 | $3 P$ | top / bottom | 15093063 |
| $500 \ldots 630$ | B5 | 4 P | top / bottom | 15094063 |
| $800 . . .1250$ | B6 | 3 P | top / bottom | 15093080 |
| $800 . . .1250$ | B6 | 4 P | top / bottom | 15094080 |
| 1600 | B7 | 3 P | top / bottom | 15093160 |
| 1600 | B7 | 4 P | top / bottom | 15094160 |
| 2000 ... 3200 | B8 | $3 / 4 \mathrm{P}$ | top / bottom | included |



## Inter-phase barrier

## Use

Safety isolation between the terminals, essential for use at 690 VAC or in a polluted or dusty atmosphere.

| Rating (A) | Frame size | No. of poles | Reference |
| :---: | :---: | :---: | :---: |
| $125 \ldots 200$ | B3 | $2 P$ | $2998 \mathbf{0 0 3 3}$ |
| $125 \ldots 200$ | B3 | $3 P$ | $2998 \mathbf{0 0 3 4}$ |
| $250 \ldots 400$ | B4 | $2 P$ | $2998 \mathbf{0 0 2 3}$ |
| $250 \ldots 400$ | B4 | $3 P$ | $2998 \mathbf{0 0 2 4}$ |
| $500 \ldots 630$ | B5 | $2 P$ | $2998 \mathbf{0 0 1 3}$ |
| $500 \ldots 630$ | B5 | $3 P$ | $2998 \mathbf{0 0 1 4}$ |
| $800 \ldots 3200$ | B6 $\ldots$ B8 | $2 / 3 P$ | included |

## SIRCOVER

Manual transfer switches
from 125 to 3200 A

## Accessories (continued)

Key handle interlocking system

| Padlocking in position I, 0 or II |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SIRCOVER <br> Rating (A) / <br> Frame size | SIRCOVER Bypass Rating (A) / Frame size | Operation | Figure | Reference |
| 125 ... 630 / B3 ... B5 | $125 . . .200$ / B3 | external | 1 | 14232813 |
| Locking using RONIS EL11AP lock in position 0 (not included) |  |  |  |  |
| SIRCOVER <br> Rating (A) / <br> Frame size | SIRCOVER Bypass Rating (A) / Frame size | Operation | Figure | Reference |
| 125 ... 630/B3 ... B5 | $125 . . .200$ / B3 | direct | 2 | $41091006{ }^{(1)}$ |
|  | 250 ... 630 / B4 ... B5 | direct | 3 | please consult us |
| 800... 1600/B6 ... B7 | 800 ... 1600 / B6 ... B7 | direct | 3 | $41091004^{(2)}$ |
| 2000 ... 3200 / B8 |  | direct | 3 | 4109 2007 ${ }^{(2)}$ |
| 125 ... 630 / B3 ... B5 | 125 ... $630 / \mathrm{B} 3 . .$. B5 | external | 4 | 1499 7701 ${ }^{(2)}$ |
| 2000 ... 3200 / B8 | 800 ... 1600 / B6 ... B7 | external | 4 | $27997002^{(2)}$ |

(1) Specific handle included.
(2) This locking facility can be configured by the user in the 3 positions.

| Locking using RONIS EL11AP lock in position I, 0, II (not included) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SIRCOVER <br> Rating (A) / <br> Frame size | SIRCOVER Bypass Rating (A) / Frame size | Operation | Figure | Reference |
| 125... 630/B3 ... B5 | 125 ... 200 / B3 | direct | 2 | $41091002{ }^{(1)}$ |
|  | 250 ... 630 / B4 ... B5 | direct | 3 | please consult us |
| 800... 1600/B6... B7 | 800 ... 1600 / B6 ... B7 | direct | 3 | $41091004^{(2)}$ |
| 2000 ... 3200 / B8 |  | direct | 3 | $4109 \mathbf{2 0 0 7}^{(2)}$ |
| 125 ... 630/B3 ... B5 | 125 ... 630 / B3 ... B5 | external | 4 | $14997701{ }^{(2)}$ |
| 2000 ... 3200 | 800 ... 1600 / B6 ... B7 | external | 4 | 2799 7002 ${ }^{(2)}$ |

(1) Specific handle included.
(2) This locking facility can be configured by the user in the 3 positions.


## Use

- Using padlock (not supplied). This device is factory mounted in the direct or external operation handle and allows the use of up to 3 padlocks.
- Locking:
- using lock (not supplied)
- using undervoltage coil.
- The interlocking positions are either determined as standard or configured by the user by removing the pre-formed tabs.
- Padlocking and locking can be combined.


Fig. 2


## Other specific accessories



- Customised protection screens (for specific dimensions or high ambient temperatures).
- Connection accessories.
- Low level auxiliary contacts.


## Enclosed transfer switch solutions

## General characteristics

- Adapted to mechanical risk and dust hazard.
- Operation handle: S-type black handle padlockable in position 0.
- Protection degree: IP54
- Colour: RAL 7035 up to 630 A, above RAL 7035 and RAL 9001 for casing and door.
- Cable gland plate: top and bottom
- Material: XC steel, thickness 1.5 mm .
- Coating: epoxy polyester powder (ratings < 630 A), polyester powder (ratings $\geq 630$ A)
- Wall mounting: 4 fixing lugs supplied loose.
- Door: solid with hinges.
- Door lock: 3 mm double bar key (ratings <

630 A), 8 mm square key (ratings $\geq 630$ A), key supplied.

- Miscellaneous: 2 earth connection points, double door locking.

References

| Rating (A) | Number of poles | Top/Bottom connection I-0-II <br> Reference |
| :---: | :---: | :---: |
| 125 | $3 P$ | 42123012 |
| 125 | 4 P | 42124012 |
| 160 | 3 P | 42123016 |
| 160 | 4 P | 42124016 |
| 250 | 3 P | 42123025 |
| 250 | 4 P | 42124025 |
| 400 | 3 P | 42123040 |
| 400 | 4 P | 42124040 |
| 500 | 3 P | 42123050 |
| 500 | 4 P | 42124050 |
| 630 | 3 P | 42123063 |
| 630 | 4 P | 42124063 |
| 800 | 3 P | 42123080 |
| 800 | 4 P | 42124080 |
| 1250 | $3 P$ | 42123120 |
| 1250 | 4 P | 42124120 |
| 1600 | $3 P$ | 42123160 |
| 1600 | 4 P | 42124160 |


coff_298_b

## Dimensions


(1) $125 \ldots 630 \mathrm{~A}: 58 \mathrm{~mm}$. 76.

| Rating (A) | No. of poles | H x W x D (mm) | Max. connection cross-section ( $\mathrm{mm}^{2}$ ) | M (mm) | N (mm) | $\mathbf{Z}$ (mm) | Top/Bottom connection |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Ah (mm) | B1 (mm) | Weight (kg) |
| 125 | 3/4 P | $500 \times 400 \times 250$ | 50 | 448 | 458 | 28 | 190 | 190 | 23 |
| 160 | 3/4 P | $500 \times 400 \times 250$ | 95 | 448 | 458 | 28 | 190 | 190 | 23 |
| 250 | 3/4 P | $500 \times 400 \times 250$ | 150 | 448 | 458 | 29.3 | 185 | 185 | 23 |
| 400 | 3/4 P | $800 \times 600 \times 300$ | 240 | 758 | 552 | 29.3 | 330 | 330 | 45 |
| 500 | 3/4 P | $800 \times 600 \times 300$ | 240 | 648 | 658 | 45 | 298 | 298 | 55 |
| 630 | 3/4 P | $800 \times 600 \times 300$ | $2 \times 300$ | 648 | 658 | 45 | 290 | 290 | 55 |
| 800 | 3/4 P | $1200 \times 700 \times 500$ | $2 \times 300$ | 740 | 1152 | 24 | 465 | 465 | 78 |
| 1250 | 3/4 P | $1200 \times 700 \times 500$ | $4 \times 185$ | 740 | 1152 | 24 | 465 | 465 | 88 |
| 1600 | 3/4 P | $1200 \times 700 \times 500$ | $4 \times 300$ | 740 | 1152 |  | 470 | 470 | 94 |

SIRCOVER AC - Characteristics according to IEC 60947-3 and IEC 60947-6-1 125 to 630 A / B3 to B5

| Thermal current $\mathrm{l}_{\mathrm{th}}$ at $40^{\circ} \mathrm{C}$ | 125 A | 160 A | 200 A | 250 A | 315A | 400 A | 500 A | 630 A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size | B3 | B3 | B3 | B4 | B4 | B4 | B5 | B5 |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{M}$ | 800 | 800 | 800 | 1000 | 1000 | 1000 | 1000 | 1000 |
| Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}(\mathrm{kV})$ | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 |

Rated operational currents le (A) according to IEC 60947-6-1

| Rated voltage | Utilisation category | A/B ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 415 VAC | AC-31 A / AC-31 B | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 |
| 415 VAC | AC-32 A / AC-32 B |  |  |  | 200 | 315 | 400 | 500 | 500 |
| 415 VAC | AC-33 A / AC-33 B |  |  |  | 200 | 200 | 200 | 400 | 400 |

Rated operational currents $I_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3

| Rated voltage | Utilisation category | A/B ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 415 VAC | AC-20 A / AC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 415 VAC | AC-21 A/AC-21 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 415 VAC | AC-22 A/AC-22 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 415 VAC | AC-23 A / AC-23 B | 125/125 | 160/160 | 200/200 | 200/200 | 315/315 | 400/400 | 500/500 | 630/630 |
| 500 VAC | AC-20 A/AC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 500 VAC | AC-21 A / AC-21 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 500 VAC | AC-22 A/AC-22 B | 125/125 | 160/160 | 200/200 | 200/250 | 200/315 | 200/400 | 500/500 | 500/500 |
| 500 VAC | AC-23 A / AC-23 B | 80/80 | 80/80 | 80/80 | 200/200 | 200/200 | 200/200 | 400/400 | 400/400 |
| $690 \mathrm{VAC}^{(7)}$ | AC-20 A/AC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| $690 \mathrm{VAC}^{(7)}$ | AC-21 A / AC-21 B | 125/125 | 160/160 | 200/200 | 200/200 | 200/200 | 200/200 | 500/500 | 500/500 |
| $690 \mathrm{VAC}^{(7)}$ | AC-22 A / AC-22 B | 125/125 | 125/125 | 125/125 | 160/160 | 160/160 | 160/160 | 400/400 | 400/400 |
| $690 \mathrm{VAC}^{(7)}$ | AC-23 A / AC-23 B | 63/80 | 63/80 | 63/80 | 125/125 | 125/125 | 125/125 | 400/400 | 400/400 |
| 220 VDC | DC-20 A / DC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 220 VDC | DC-21 A / DC-21 B | 125/125 | 160/160 | 200/200 | 250/250 | 250/250 | 250/250 | 500/500 | 630/630 |
| 220 VDC | DC-22 A / DC-22 B | 125/125 | 160/160 | 200/200 | 250/250 | 250/250 | 250/250 | 500/500 | 630/630 |
| 220 VDC | DC-23 A / DC-23 B | 125/125 | 125/125 | 125/125 | 200/200 | 200/200 | 200/200 | 500/500 | 630/630 |
| 440 VDC | DC-20 A / DC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 440 VDC | DC-21 A / DC-21 B | $125^{(2)} 125^{(2)}$ | $125^{(2)} / 125^{(2)}$ | $125^{(2)} / 125^{(2)}$ | 200 ${ }^{(2)} / 200^{(2)}$ | 200 ${ }^{(2)} / 200^{(2)}$ | $200^{(2)} / 200^{(2)}$ | $500^{(2)} / 500^{(2)}$ | 630 ${ }^{(2)} / 630^{(2)}$ |
| 440 VDC | DC-22 A / DC-22 B | $125^{(2) / 125}{ }^{(2)}$ | $125^{(2)} / 125^{(2)}$ | $125^{(2)} / 125^{(2)}$ | 2000 ${ }^{(2)} 2000^{(2)}$ | $200^{(2)} / 200^{(2)}$ | $200^{(2)} / 200^{(2)}$ | $500^{(2)} / 500^{(2)}$ | $630^{(2)} / 630^{(2)}$ |
| 440 VDC | DC-23 A / DC-23 B | $125^{(3) / 125}{ }^{(3)}$ | $125^{(3)} / 125^{(3)}$ | $125^{(3)} 125^{(3)}$ | $200^{(3)} / 200^{(3)}$ | $200{ }^{(3)} 200{ }^{(3)}$ | $200^{(3)} / 200^{(3)}$ | $500^{(3)} / 500^{(3)}$ | $500^{(3 / 500}$ |

Operational power in AC-23 (kW)

| At 400 VAC without pre-break in $\mathrm{AC}^{(3)}$ | 63/63 | 80/80 | 80/80 | 132/132 | 132/132 | 280/280 | 280/280 | 450/450 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At 690 VAC without pre-break in $\mathrm{AC}^{(3)}$ | 55/75 | 55/75 | 55/75 | 90/110 | 90/110 | 150/185 | 150/185 | 185/220 |
| Reactive power (kvar) |  |  |  |  |  |  |  |  |
| At 415 VAC | 55 | 75 | 90 | 115 | 145 | 185 | 230 | 290 |
| Fuse protected short-circuit withstand as per IEC 60947-3 at 690 VAC |  |  |  |  |  |  |  |  |
| Prospective short-circuit current (kA rms) | $100{ }^{(5)}$ | $100{ }^{(5)}$ | $50^{(5)}$ | 50 | 50 | 50 | 50 | 50 |
| Associated fuse rating (A) | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 |

Circuit breaker protected short-circuit withstand with any circuit breaker that ensures tripping in less than $0.3 \mathrm{~s}^{(4)}$

Short-circuit withstand without protection as per IEC 60947-3 at 690 VAC

| Rated short-time withstand current $1 \mathrm{~s} \mathrm{I}_{\mathrm{cw}}(\mathrm{kA} \mathrm{rms}$ ) | $7{ }^{(5)}$ | $7{ }^{(5)}$ | $7{ }^{(5)}$ | 8 | 8 | 8 | 10 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated peak withstand current (kA peak) | 20 | 20 | 20 | 30 | 30 | 30 | 45 | 45 |
| Rated short-time withstand current $60 \mathrm{~ms} \mathrm{I}_{\mathrm{cw}}$ (kA rms) as per IEC 60947-6-1 at 415 VAC |  |  |  | $10^{(6)}$ | $10^{(6)}$ | $10^{(6)}$ | 10 | 12.6 |

Connection

| Minimum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | 35 | 50 | 70 | 95 | 150 | 185 | 240 | $2 \times 150$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Minimum Cu busbar cross-section (mm²) |  |  |  |  |  |  |  | $2 \times 30 \times 5$ |
| Maximum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | 50 | 95 | 120 | 150 | 240 | 240 | $2 \times 185$ | $2 \times 300$ |
| Maximum Cu busbar width (mm) | 25 | 25 | 25 | 32 | 32 | 32 | 50 | 50 |
| Tightening torque mini / maxi (Nm) | 9/13 | 9/13 | 9/13 | 20/26 | 20/26 | 20/26 | 20/26 | 20/26 |
| Mechanical characteristics |  |  |  |  |  |  |  |  |
| Durability (number of operating cycles) | 10000 | 10000 | 10000 | 8000 | 8000 | 5000 | 5000 | 5000 |
| Weight of 3 P switch (kg) | 2.9 | 2.9 | 2.9 | 3.8 | 3.9 | 3.9 | 8.6 | 9.1 |
| Weight of 4 P switch (kg) | 4.1 | 4.1 | 4.1 | 4.6 | 4.9 | 4.9 | 10.4 | 11.1 |

(1) Category with index $A=$ frequent operation -

Category with index $B=$ infrequent operation.
(2) 3-pole device with 2 pole in series for the " + " and 1 pole for the "-"

4 -pole device with 2 poles in series by polarity.
(3) The power value is given for information only, the current values vary from one manufacturer to another.
(6) Value for coordination with any circuit-breaker that ensures tripping in less than $0.3 s$. For coordination with specific circuit-breaker references, higher short-circuit current values are available. Please consult us.
(5) Data at 415 VAC
(6) Data at 30 ms
(7) With terminal shrouds or phase barrier.

## 800 to 3200 A / B6 to B8

| Thermal current $\mathrm{t}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ | 800 A | 1000 A | 1250 A | 1600 A | 2000 A | 2500 A | 3200 A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size | B6 | B6 | B6 | B7 | B8 | B8 | B8 |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{M}$ ) | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
| Rated impulse withstand voltage U $\mathrm{U}_{\text {imp }}$ (kV) | 12 | 12 | 12 | 12 | 12 | 12 | 12 |

Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1

| Rated voltage | Utilisation category | $\mathrm{A} / \mathrm{B}^{(1)}$ | $\mathrm{A} / \mathrm{B}^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | $A / B^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 415 VAC | AC-31 A / AC-31 B | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 |
| 415 VAC | AC-32 A / AC-32 B | 800 | 1000 | 1250 | 1600 | 2000 | 2000 | 2000 |
| 415 VAC | AC-33 A / AC-33 B | 800 | 800 | 800 | 1000 | 1250 | 1250 | 1250 |

Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3

| Rated voltage | Utilisation category | A/B ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 415 VAC | AC-20 A / AC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | 2000/2000 | 2500/2500 | 3200/3200 |
| 415 VAC | AC-21 A/AC-21 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | -/2000 | -/2500 | -/3200 |
| 415 VAC | AC-22 A / AC-22 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | -/2000 | -/2500 | -/3200 |
| 415 VAC | AC-23 A / AC-23 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 | -/1600 | -/1600 | -/1600 |
| 500 VAC | AC-20 A / AC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | 2000/2000 | 2500/2500 | 3200/3200 |
| 500 VAC | AC-21 A/AC-21B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | -/2000 | -/2500 | -/3200 |
| 500 VAC | AC-22 A/ AC-22 B | 630/630 | 800/800 | 1000/1000 | 1600/1600 |  |  |  |
| 500 VAC | AC-23 A / AC-23 B | 400/400 | 630/630 | 800/800 | 1000/1000 |  |  |  |
| $690 \mathrm{VAC}^{(6)}$ | AC-20 A/AC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | 2000/2000 | 2500/2500 | 3200/3200 |
| $690 \mathrm{VAC}^{(6)}$ | AC-21 A/AC-21 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | -/2000 | -/2500 | -/3200 |
| $690 \mathrm{VAC}^{(6)}$ | AC-22 A/AC-22 B | 630/630 | 800/800 | 1000/1000 | 1000/1000 |  |  |  |
| $690 \mathrm{VAC}^{(6)}$ | AC-23 A/ AC-23 B | 400/400 | 630/630 | 800/800 | 800/800 |  |  |  |
| 220 VDC | DC-20 A / DC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 |  |  |  |
| 220 VDC | DC-21 A / DC-21 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |  |  |  |
| 220 VDC | DC-22 A / DC-22 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |  |  |  |
| 220 VDC | DC-23 A / DC-23 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |  |  |  |
| 440 VDC | DC-20 A / DC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 |  |  |  |
| 440 VDC | DC-21 A / DC-21 B | $800^{(3)} / 800^{(3)}$ | $10000^{(3)} 10000^{(3)}$ | $12500^{(3)} / 1250^{(3)}$ | 1250/1250 |  |  |  |
| 440 VDC | DC-22 A / DC-22 B | $800{ }^{(3 /} / 8000^{(3)}$ | $10000^{(3 / 1000} 13{ }^{(3)}$ | $1250{ }^{(3 / 1250} 12{ }^{(3)}$ | 1250/1250 |  |  |  |
| 440 VDC | DC-23 A / DC-23 B | $800{ }^{(3)} / 800^{(3)}$ | $10000^{(3 / 1000} 3{ }^{(3)}$ | $1250^{(3 / 1250} 3$ | 1250/1250 |  |  |  |
| Operational power in AC-23 (kW) |  |  |  |  |  |  |  |  |
| At 400 VAC without pre-break in $\mathrm{AC}^{(3)}$At 690 VAC without pre-break in $\mathrm{C}^{(3)}$ |  | 710/710 | 710/710 | 710/710 | 710/710 | 710/710 |  |  |
|  |  | 185/220 | 475/475 | 475/475 | 750/750 | 750/750 |  |  |

Reactive power (kvar)

| At 400 VAC $^{(5)}$ | 365 | 460 | 575 |
| :--- | :--- | :--- | :--- |

Fuse protected short-circuit withstand as per IEC 60947-3 at 415 VAC

| Prospective short-circuit current (kA rms) | 50 | 100 | 100 | 100 |
| :--- | :---: | :---: | :---: | :---: |
| Associated fuse rating (A) | 800 | 1000 | 1250 | $2 \times 800$ |

Circuit breaker protected short-circuit withstand with any circuit breaker that ensures tripping in less than $0.3 s^{(4)}$


Short-circuit withstand without protection as per IEC 60947-3 at 415 VAC

| Rated short-time withstand current $1 \mathrm{~s} \mathrm{l}_{\mathrm{cw}}$ (kA rms) | 26 | 35 | 35 | 50 | 50 | 50 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated peak withstand current (kA peak) | 55 | 55 | 80 | 110 | 110 | 110 | 120 |
| Rated short-time withstand current 60 ms Icw (kA rms) as per IEC 60947-6-1 at 415 VAC | 16 | 20 | 25 | 32 | 40 | 50 | 50 |
| Connection |  |  |  |  |  |  |  |
| Minimum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | $2 \times 185$ | $2 \times 240$ |  |  |  |  |  |
| Minimum Cu busbar cross-section ( $\mathrm{mm}^{2}$ ) | $2 \times 40 \times 5$ | $2 \times 50 \times 5$ | $2 \times 60 \times 5$ | $2 \times 80 \times 5$ | $2 \times 100 \times 10$ | $2 \times 100 \times 10$ | $2 \times 100 \times 10$ |
| Maximum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | $2 \times 300$ | $4 \times 185$ | $4 \times 185$ | $6 \times 185$ |  |  |  |
| Maximum Cu busbar width (mm) | 63 | 63 | 63 | 100 | 100 | 100 | 100 |
| Tightening torque min (Nm) | 20/26 | 20/26 | 20/26 | 40/45 | 40/45 | 40/45 | 40/45 |

## Mechanical characteristics

| Durability (number of operating cycles) | 4000 | 4000 | 4000 | 3000 | 3000 | 3000 | 3000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Weight of a 3 pole device $(\mathrm{kg})$ | 20.5 | 21.0 | 21.6 | 25.7 | 42.0 | 42.0 | 52.3 |
| Weight of a 4 pole device $(\mathrm{kg})$ | 24.8 | 25.6 | 26.2 | 32.0 | 52.9 | 52.9 | 66.6 |

(1) Category with index $A=$ frequent operation -

Category with index $B=$ infrequent operation.
(2) 3-pole device with 2 pole in series for the "+" and 1 pole for the "-"
(6) Value for coordination with any circuit-breaker that ensures tripping in less than 0.3 s. For coordination with specific circuit-breaker references, higher short-circuit current values are available. Please consult us.
4-pole device with 2 poles in series by polarity.
(5) Data at 415 VAC.
(3) The power value is given for information only, the current values vary from one manufacturer
(6) With terminal shrouds or phase barrier
to another.

## SIRCOVER

Manual transfer switches
from 125 to 3200 A

Dimensions
125 to 1600 A / B3 to B7

## Direct front operation


A. S2 type handle for external operation: 125 to 630 A B. S4 type handle for external operation: 800 to 1600 A

External front operation


1. Terminal shrouds
2. Direct handle operation:

- 125 to 630 A: L1 = 140 mm ,

800 to 1600 A: $\mathrm{L1}=210 \mathrm{~mm}$.

|  | Overall dimensions |  |  |  | Terminal shrouds <br> AC | Switch body |  |  |  | Switch mounting |  |  | Connection |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rating (A)/ <br> Frame size | $\begin{gathered} \text { A } \\ \text { 3p. } \end{gathered}$ | $\begin{gathered} \text { A } \\ 4 \mathrm{p} . \end{gathered}$ | C | E min |  | H | HA | $\begin{gathered} \mathrm{J} \\ 3 \mathrm{p} . \end{gathered}$ | $\underset{4 \mathrm{p}}{\mathrm{~J}} .$ | $\begin{gathered} M \\ 3 \mathrm{p} . \end{gathered}$ | $\begin{gathered} M \\ 4 \mathrm{p} . \end{gathered}$ | N | T | U | v | W | $\underset{\text { Xp. }}{\substack{\mathrm{p} \\ \hline}}$ | $\begin{gathered} \mathrm{X} \\ 4 \mathrm{p} . \end{gathered}$ | Y | Z | Z1 | AA | BA | CA |
| 125 / B3 | 221 | 251 | 218 | 208... 436 | 235 | 148 | 25 | 182 | 212 | 156 | 186 | 101 | 36 | 20 | 25 | 8.5 | 56 | 50 | 3.5 | 28 | 124 | 135 | 115 | 10 |
| 160 / B3 | 221 | 251 | 218 | $208 . . .436$ | 235 | 148 | 25 | 182 | 212 | 156 | 186 | 101 | 36 | 20 | 25 | 8.5 | 56 | 50 | 3.5 | 28 | 124 | 135 | 115 | 10 |
| 200 / B3 | 221 | 251 | 218 | 208 ... 436 | 235 | 148 | 25 | 182 | 212 | 156 | 186 | 101 | 36 | 20 | 25 | 8.5 | 56 | 50 | 3.5 | 28 | 124 | 135 | 115 | 10 |
| 250 / B4 | 262 | 312 | 218 | $208 . .436$ | 280 | 148 | 25 | 223 | 273 | 196 | 246 | 116 | 50 | 25 | 30 | 11 | 61 | 61 | 3.5 | 30 | 124 | 160 | 130 | 15 |
| 315 / B4 | 262 | 312 | 218 | $208 . . .436$ | 280 | 148 | 25 | 223 | 273 | 196 | 246 | 116 | 50 | 35 | 35 | 11 | 61 | 61 | 3.5 | 30 | 124 | 170 | 140 | 5 |
| 400 / B4 | 262 | 312 | 218 | $208 . . .436$ | 280 | 148 | 25 | 223 | 273 | 196 | 246 | 116 | 50 | 35 | 35 | 11 | 61 | 61 | 3.5 | 30 | 124 | 170 | 140 | 5 |
| 500 / B5 | 319 | 379 | 295 | 285 ... 513 | 401 | 225 | 25 | 272 | 332 | 246 | 306 | 176 | 65 | 32 | 37 | 13 | 70.5 | 65.5 | 5 | 43 | 180 | 235 | 205 | 15 |
| 630 / B5 | 319 | 379 | 295 | 285 ... 513 | 400 | 225 | 25 | 272 | 332 | 246 | 306 | 176 | 65 | 45 | 50 | 13 | 70.5 | 65.5 | 5 | 43 | 180 | 260 | 220 | 20 |
| 800 / B6 | 386 | 466 | 375 | 425 ... 577 | 459 | 298 | 29 | 306.5 | 386.5 | 255 | 336 | 250 | 80 | 50 | 60.5 | 15 | 48 | 48 | 7 | 66.5 | 253.5 | 321 |  | 26.5 |
| 1000 / B6 | 386 | 466 | 375 | 425 ... 577 | 459 | 298 | 29 | 306.5 | 386.5 | 255 | 336 | 250 | 80 | 50 | 60.5 | 15 | 48 | 48 | 7 | 66.5 | 253.5 | 321 |  | 26.5 |
| 1250 / B6 | 386 | 466 | 375 | 425 ... 577 | 459 | 298 | 29 | 306.5 | 386.5 | 255 | 336 | 250 | 80 | 60 | 65 | 16x11 | 48 | 48 | 7 | 66.5 | 255.5 | 330 |  | 29.5 |
| 1600 / B7 | 478 | 598 | 375 | 425 ... 577 | 461 | 298 | 29 | 388.5 | 518.5 | 347 | 467 | 250 | 120 | 90 | 43.5 | $12.5 \times 5$ | 54 | 54 | 8 | 66.5 | 255.5 | 288 |  | 15 |

SIRCOVER 2000 à 3200 A / B8
Direct front operation


| Rating (A) / Frame size | Overall dimensions |  | Switch mounting |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { A } \\ 3 \mathrm{p} . \end{gathered}$ | $\begin{gathered} \text { A } \\ 4 \mathrm{p} . \end{gathered}$ | $\begin{gathered} \text { M } \\ 3 \mathrm{p} . \end{gathered}$ | $\begin{gathered} M \\ 4 \mathrm{p} . \end{gathered}$ |
| 2000 ... 3200 / B8 | 478 | 598 | 347 | 467 |

SIRCOVER Bypass 125 to 1600 A / B3 to B7

## Direct front operation



A. S2 type handle for external operation: 125 to 200 A
B. S3 type handle for external operation: 250 to 630 A
C. External double lever handle: 800 to 1600 A

1. Terminal shrouds
2. Direct handle operation:

- 125 to 200 A: $\mathrm{L1}=140 \mathrm{~mm}$,
-250 to 630 A: $L 1=210 \mathrm{~mm}$,
-800 to $1600 \mathrm{~A}: L 1=\varnothing 330 \mathrm{~mm}$.

|  | Overall dimensions |  |  |  | Terminal shrouds | Switch body |  |  |  | Switch mounting |  |  | Connection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size | $\underset{3+6 \mathrm{p} .}{\mathrm{A}}$ | $4+8 p .$ | C | $\underset{\min }{\mathrm{E}}$ | AC | H | HA | $\begin{gathered} \text { J 3+6 } \\ \text { p. } \end{gathered}$ | $\begin{gathered} \text { J 4+8 } \\ \text { p. } \end{gathered}$ | $\begin{gathered} \text { M 3+6 } \\ \text { p. } \end{gathered}$ | $\begin{gathered} \text { M } \\ \text { 4+8 } \\ \text { p. } \end{gathered}$ | N | T | U | V | W | $\underset{3+6 \mathrm{p} .}{\mathrm{X}}$ | $\underset{4+8 \mathrm{p}}{\mathrm{X}}$ | Y | Z | Z1 | Z1 | AA | BA | CA |
| 125/B3 | 221 | 251 | 313 | 320 | 235 | 243 | 25 | 182 | 212 | 156 | 186 | 101 | 36 | 20 | 25 | 8.5 | 56 | 50 | 3.5 | 28 | 124 | 219 | 135 | 115 | 10 |
| 160/B3 | 221 | 251 | 313 | 320 | 235 | 243 | 25 | 182 | 212 | 156 | 186 | 101 | 36 | 20 | 25 | 8.5 | 56 | 50 | 3.5 | 28 | 124 | 219 | 135 | 115 | 10 |
| 200/B3 | 221 | 251 | 313 | 320 | 235 | 243 | 25 | 182 | 212 | 156 | 186 | 101 | 36 | 20 | 25 | 8.5 | 56 | 50 | 3.5 | 28 | 124 | 219 | 135 | 115 | 10 |
| 250/B4 | 262 | 312 | 313 | 298 | 280 | 243 | 25 | 223 | 273 | 196 | 246 | 116 | 50 | 25 | 30 | 11 | 61 | 61 | 3.5 | 30 | 124 | 219 | 160 | 130 | 10 |
| 400/B4 | 262 | 312 | 313 | 298 | 280 | 243 | 25 | 223 | 273 | 196 | 246 | 116 | 50 | 35 | 35 | 11 | 61 | 61 | 3.5 | 30 | 124 | 219 | 170 | 140 | 15 |
| 500/B5 | 319 | 379 | 432 | 417 | 401 | 362 | 25 | 272 | 332 | 246 | 306 | 176 | 65 | 32 | 37 | 13 | 70.5 | 65.5 | 5 | 43 | 180 | 317 | 235 | 205 | 15 |
| 630/B5 | 319 | 379 | 432 | 417 | 400 | 362 | 25 | 272 | 332 | 246 | 306 | 176 | 65 | 45 | 50 | 13 | 70.5 | 65.5 | 5 | 43 | 180 | 317 | 260 | 220 | 20 |
| 800/B6 | 386 | 466 | 560 | 550 | 459 | 479 | 29 | 306.5 | 386.5 | 255 | 335 | 250 | 80 | 50 | 60.5 | 15 | 48 | 48 | 7 | 66.5 | 253.5 | 439.5 | 321 |  | 26.5 |
| 1250/B6 | 386 | 466 | 560 | 550 | 459 | 479 | 29 | 306.5 | 386.5 | 255 | 335 | 250 | 80 | 60 | 65 | $16 \times 11$ | 48 | 48 | 7 | 66.5 | 253.5 | 439.5 | 320 |  | 29.25 |
| 600/B7 | 478 | 598 | 560 | 550 | 461 | 479 | 29 | 388.5 | 518.5 | 347 | 467 | 250 | 0 | 90 | 43.5 | $12.5 \times 5$ | 54 | 54 | 8 | 66.5 | 253.5 | 439.5 | 288 |  | 15 |

Connection terminals

SIRCOVER and SIRCOVER Bypass 800 A / B6

SIRCOVER and SIRCOVER
Bypass 1250 A / B6

SIRCOVER 1600 to 3200 A/B7 to B8 SIRCOVER Bypass 1600 A / B7



Manual transfer switches
from 125 to 3200 A

Dimensions for external handles
SIRCOVER 125 to 630 A / B3 to B5

(1) $\varnothing 31$ to $\varnothing 37$ : Rear screw mounting $\varnothing 37$ : front clip mounting.

SIRCOVER 800 to 1600 A / B6 to B7
Handle type
(1) $\varnothing 31$ to Ø37: Rear screw mounting Ø37: front clip mounting.
(2) $\varnothing 6$ to $\varnothing 7$ : clip mounting.

SIRCOVER 2000 to 3200 A / B8
Handle type

| S5 type |
| :--- |
| with V Escutcheon |
| Direction of operation |

Front operation

SIRCOVER Bypass 125 to 200 A / B3

(1) Ø31 to Ø37: Rear screw mounting Ø37: front clip mounting.

SIRCOVER Bypass 250 to 630 A / B4 to B5

(1) Ø31 to Ø37: Rear screw mounting Ø37: front clip mounting.

SIRCOVER Bypass 800 to 1600 A / B6 to B7

Handle type $\quad$| Front operation |
| :---: |
| Direction of operation |

# SIRCOVER ATS Bypass <br> Manual transfer switches <br> from 125 to 1600 A 

## Function

SIRCOVER ATS Bypass switches are manual four pole transfer switches with positive break indication. They are designed to isolate ATS type electrical equipment (automatic transfer switch) or UPS, with minimum interruption to the load supply. Integrating a SOCOMEC transfer switch into the installation enables source selection when in Bypass (see operating principle below).

## Advantages

## Stable positions

SIRCOVER ATS Bypass switches have 3 stable positions which are not affected by voltage drops or vibrations.

## On load switching

Thanks to its AC-22 characteristics, tested in accordance with standard IEC 60947-3, the SIRCOVER ATS Bypass enables on load switching.

## Secured breaking

Simultaneous upstream and downstream isolation and fully visualised breaking.

## A complete solution

The SIRCOVER ATS Bypass is a single product offering a genuine solution incorporating both an equipment isolation function and a switching function.

## Operating principle



## In Bypass position:

- Without SIRCOVER: The load is supplied directly by one of the two power sources (transformer T1 for example).
- With a SIRCOVER: The supply source can be selected.

References

| Rating <br> (A) | No. of poles | Switch body | Direct handle | External handle | Shaft for external handle | Bridging bars | Auxiliary contact | Terminal shrouds | Terminal screens |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 125 A | $12+4 P$ | 41009813 | S3 type Black IP65 \| - O-|| 14333113 | S3 type Black IP65 \| - O-|| 14333113 | $\begin{gathered} 200 \mathrm{~mm} \\ 14011520 \end{gathered}$ | $\begin{gathered} 4 \mathrm{P} \\ 41094019 \end{gathered}$ | $1^{\text {st }}$ contact NO/NC included $2^{\text {nd }}$ contact NO/NC $41090021^{(1)}$ | $\begin{gathered} 4 \mathrm{P} \\ 26944014^{(2)(3)} \end{gathered}$ | $\begin{gathered} 4 \mathrm{P} \\ 15094012^{(4)} \end{gathered}$ |
| 160 A | $12+4 \mathrm{P}$ | 41009816 |  |  |  |  |  |  |  |
| 250 A | $12+4 \mathrm{P}$ | 41009825 |  |  | $\begin{gathered} 320 \mathrm{~mm} \\ 14011532 \end{gathered}$ | $\begin{gathered} 4 \mathrm{P} \\ 41094025 \end{gathered}$ |  |  |  |
| 400 A | $12+4 \mathrm{P}$ | 41009840 |  |  | $14011540$ | $\begin{gathered} 4 \mathrm{P} \\ 41094039 \end{gathered}$ |  | $\begin{gathered} 4 \mathrm{P} \\ 26944021^{(2)(3)} \end{gathered}$ | $\begin{gathered} 4 \mathrm{P} \\ 15094025^{(4)} \end{gathered}$ |
| 630 A | $12+4 \mathrm{P}$ | 41009863 |  |  |  | $\begin{gathered} 4 \mathrm{P} \\ 41094063 \end{gathered}$ |  | $\begin{gathered} 4 \mathrm{P} \\ 26944051^{(2)(3)} \end{gathered}$ | $\begin{gathered} 4 \mathrm{P} \\ 15094063^{(4)} \end{gathered}$ |
| 800 A | $12+4 P$ | 41009880 |  |  |  |  |  |  |  |
| 1000 A | $12+4 P$ | 41009881 |  | Black |  |  |  |  |  |
| 1250 A | $12+4 P$ | 41009882 |  |  |  |  |  |  |  |
| 1600 A | $12+4 \mathrm{P}$ | 41009886 |  |  |  |  |  |  |  |

(1) 2 pieces: one for position I and one for position II.
(2) To fully shroud front, rear, top and bottom 8 references required.
(3) To shroud front switch top and bottom 4 references required.
(4) For complete front protection, order the reference twice.

## Accessories

Key handle interlocking system

| Locking in position 0 with RONIS EL11AP (lock not supplied) |  |  |  |
| :--- | :---: | :---: | :---: |
| Rating (A) Operation Figure Reference <br> $125 \ldots 630$ direct 1 $4109 \mathbf{1 0 0 6} \mathbf{6}^{(1)}$ <br> $125 \ldots 630$ external 3 14997701 <br> $800 \ldots 1600$ direct and external 2 Please consult us |  |  |  |


(1) Specific handle included.
Locking in positions I, 0, II with RONIS EL11AP (lock not supplied)

| Rating (A) | Operation | Figure | Reference |
| :--- | :--- | :---: | :---: |
| $125 \ldots 630$ | direct | 1 | $4109 \mathbf{1 0 0 2}{ }^{(1)}$ |
| $800 \ldots 1600$ | direct | 2 | Please consult us |

1) Specific handle included.
Locking with CASTELL K type lock (lock not supplied)

| Rating (A) | Operation | Figure | Reference |
| :--- | :--- | :---: | :---: |
| $125 \ldots 630$ | external | 3 | 14997702 |
| $800 \ldots 1600$ | external |  | Please consult us |



Manual changeover switches
from 125 to 1600 A

Characteristics according to IEC 60947-3
125 to 1600 A

| Thermal current $\mathrm{l}_{\mathrm{th}}$ at $40^{\circ} \mathrm{C}$ |  | 125 A | 160 A | 250 A | 400 A | 630 A | 800 A | 1000 A | 1250 A | 1600 A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{M})$ |  | 800 | 800 | 800 | 800 | 1000 | 1000 | 1000 | 1000 | 1000 |
| Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (kV) |  | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 |
| Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ |  |  |  |  |  |  |  |  |  |  |
| Rated voltage | Utilisation category | A/B ${ }^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ |
| 415 VAC | AC-20 A / AC-20 B | 125/125 | 160/160 | 250/250 | 400/400 | 630/630 | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 |
| 415 VAC | AC-21 A / AC-21 B | 125/125 | 160/160 | 250/250 | 400/400 | 630/630 | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 |
| 415 VAC | AC-22 A / AC-22 B | 125/125 | 160/160 | 250/250 | 400/400 | 630/630 | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 |
| 415 VAC | AC-23 A / AC-23 B | 125/125 | 160/160 | 250/250 | 250/250 | 500/500 | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |
| $690 \mathrm{VAC}^{(2)}$ | AC-20 A / AC-20 B | 125/125 | 160/160 | 250/250 | 400/400 | 630/630 | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 |
| $690 \mathrm{VAC}^{(2)}$ | AC-21 A / AC-21 B | 125/125 | 160/160 | 200/250 | 200/250 | 500/500 | 800/800 | 800/800 | 800/800 | 1000/1000 |
| $690 \mathrm{VAC}^{(2)}$ | AC-22 A / AC-22 B | 125/125 | 125/125 | 125/160 | 125/160 | 315/315 | 800/800 | 800/800 | 800/800 | 1000/1000 |
| $690 \mathrm{VAC}^{(2)}$ | AC-23 A / AC-23 B | 63/80 | 63/80 | 100/125 | 100/125 | 160/200 | 200/250 | 200/250 | 200/250 | 500/500 |
| 220 VDC | DC-20 A / DC-20 B | 125/125 | 160/160 | 250/250 | 400/400 | 630/630 | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 |
| 220 VDC | DC-21 A / DC-21 B | 125/125 | 160/160 | 250/250 | 250/250 | 630/630 | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |
| 220 VDC | DC-22 A / DC-22 B | 125/125 | 160/160 | 250/250 | 250/250 | 500/500 | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |
| 220 VDC | DC-23 A / DC-23 B | 125/125 | 125/125 | 200/200 | 200/200 | 500/500 | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |
| 440 VDC | DC-20 A / DC-20 B | 125/125 | 160/160 | 250/250 | 400/400 | 630/630 | 800/800 | $1000{ }^{4 / 1000}{ }^{44}$ | 1250/1250 | 1600/1600 |
| 440 VDC | DC-21 A / DC-21 B | $125^{(3)} 125^{(3)}$ | $125^{(3)} 125^{(3)}$ | 200 ${ }^{(3)} / 200{ }^{(3)}$ | $2000^{(3)} / 200{ }^{(3)}$ | $500^{(3)} / 500^{(3)}$ | $800^{(4)} / 800^{(4)}$ | $1000^{4 / 1000}{ }^{44}$ | $1250^{4 / 1250}{ }^{(4)}$ | $1250^{4 / 1250}$ |
| 440 VDC | DC-22 A / DC-22 B | $125^{(3)} / 125^{(3)}$ | $125^{(3)} 125^{(3)}$ | $200{ }^{(3)} / 200{ }^{(3)}$ | $200^{(3)} / 200^{(3)}$ | $500^{(3)} / 500^{(3)}$ | $800^{(4)} / 800{ }^{(4)}$ | $1000{ }^{4 / 1000}{ }^{44}$ | $1250^{4 / / 1250}{ }^{(4)}$ | $1250^{4 / 1250}$ |
| 440 VDC | DC-23 A / DC-23 B | $125^{(4)} / 125^{(4)}$ | $125^{(4)} / 125^{(4)}$ | $200^{(4)} / 200^{(4)}$ | $200{ }^{(4)} / 200^{(4)}$ | $500^{(4)} / 500^{(4)}$ | $800^{(4)} / 800^{(4)}$ | $1000^{(4 / 1000}{ }^{(4)}$ | $1250^{4 / 1250}$ | $1250^{(4 / 1250}$ |

Operational power in AC-23 (kW)

| At 400 VAC without pre-break in $\mathrm{AC}^{(1)(5)}$ | 63/63 | 80/80 | 132/132 | 132/132 | 280/280 | 450/450 | 710/710 | 710/710 | 710/710 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| At 690 VAC without pre-break in $\mathrm{AC}^{(1)(5)}$ | 55/75 | 55/75 | 90/110 | 90/110 | 150/185 | 185/220 | 185/220 | 185/220 | 475/475 |
| Reactive power (kvar) |  |  |  |  |  |  |  |  |  |
| At 400 VAC ${ }^{(5)}$ | 55 | 75 | 115 | 185 | 290 | 365 | 575 | 575 |  |
| Fuse protected short-circuit withstand (kA rms prospective) |  |  |  |  |  |  |  |  |  |
| Prospective short-circuit (kA rms) ${ }^{(6)}$ | 100 | 100 | 50 | 18 | 70 | 50 | 100 | 100 | 100 |
| Associated fuse rating (A) ${ }^{(6)}$ | 125 | 160 | 250 | 400 | 630 | 800 | 1000 | 1250 | $2 \times 800$ |

Circuit breaker protected short-circuit withstand with any circuit breaker that ensures tripping in less than $0.3 \mathrm{~s}^{(7)}$

| Rated short-time withstand current 0.3 slow (kA ms) | 15 | 15 | 17 | 17 | 25 | 50 | 65 | 65 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Short-circuit capacity (without protection) |  |  |  |  |  |  |  |  |  |
| Thermal current $\mathrm{Ith}^{\text {at }} 40^{\circ} \mathrm{C}$ | 125 A | 160 A | 250 A | 400 A | 630 A | 800 A | 1000 A | 1250 A | 1600 A |
| Rated short-time withstand current 1s lcw (kA rms) | 8 | 8 | 9 | 9 | 14 | 27 | 36 | 36 | 50 |
| Rated short-circuit making capacity |  |  |  |  |  |  |  | 75 | 75 |
| Connection |  |  |  |  |  |  |  |  |  |
| Minimum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | 35 | 50 | 95 | 185 | $2 \times 150$ | $2 \times 185$ |  |  |  |
| Minimum Cu busbar cross-section ( $\mathrm{mm}^{2}$ ) |  |  |  |  | $2 \times 30 \times 5$ | $2 \times 40 \times 5$ | $2 \times 60 \times 5$ | $2 \times 60 \times 5$ | $2 \times 80 \times 5$ |
| Maximum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) |  | 50 | 95 | 150 | 240 | $2 \times 300$ | $2 \times 300$ | $2 \times 300$ | $4 \times 185$ |
| Maximum Cu busbar width (mm) | 25 | 25 | 32 | 32 | 50 | 63 | 63 | 63 | 100 |
| Tightening torque min (Nm) | 9 | 9 | 20 | 20 | 20 | 20 | 20 | 20 | 40 |

Mechanical characteristics

| Durability (number of operating cycles) | 10000 | 10000 | 10000 | 10000 | 5000 | 3000 | 3000 | 3000 | 3000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight of 3 P switch (kg) | 8.3 | 8.3 | 10 | 10.3 | 20.7 | 44.3 | 45.4 | 46.4 | 54.7 |
| Weight of 4 P switch (kg) | 10.6 | 10.6 | 11.7 | 12.4 | 24.8 | 53 | 54.4 | 55.8 | 67.3 |

(1) Category with index $A=$ frequent operation

Category with index $B=$ infrequent operation. (2) With terminal shrouds.
(3) 3-pole device with 2 poles in series for the "+" and 1 pole for the "-".
(4) 4-pole device with 2 poles in series per polarity.
(5) The power value is given for information only, the current
values vary from one manufacturer to another.
(6) For a rated operational voltage $U_{e}=400$ VAC.
(7) Value for coordination with any circuit breaker that ensures tripping in less than 0.3 s . For coordination with specific circuit-breaker references, higher short-circuit current values are available. Please consult us.

## Connection terminals

SIRCOVER ATS Bypass 800 to 1000 A


SIRCOVER ATS Bypass 1250 to 1600 A


## Dimensions

SIRCOVER ATS Bypass 125 to 630 A


External front operation

A. S3 type handle for external front operation: 125 to $630 A$

1. Max length with shaft extension: E min +50 mm

| Rating <br> (A) | Overall dimensions |  | Switch body |  |  | Switch mounting |  | Connection |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A 8p. | E min | H | $J 8 p$. | J1 8p. | M 8p. | N | T | U | v | W | X 8 p . | Y | Z | Z1 | AA | BA | AC |
| 125 | 610 | $260 \pm 1$ | 193 | 238 | 338 | 576 | 101 | 36 | 20 | 25 | 8.5 | 76 | 3.5 | 47 | 143 | 135 | 115 | 10 |
| 160 | 610 | $260 \pm 1$ | 193 | 238 | 338 | 576 | 101 | 36 | 20 | 25 | 8.5 | 76 | 3.5 | 47 | 143 | 135 | 115 | 10 |
| 250 | 725 | $260 \pm 1$ | 193 | 295 | 396 | 691 | 116 | 50 | 25 | 30 | 11 | 83.5 | 3.5 | 49 | 143 | 160 | 130 | 10 |
| 400 | 725 | $260 \pm 1$ | 193 | 295 | 396 | 691 | 116 | 50 | 35 | 35 | 11 | 83.5 | 3.5 | 49 | 143 | 170 | 140 | 15 |
| 630 | 850 | $337 \pm 1$ | 270 | 358 | 458 | 816 | 176 | 65 | 45 | 50 | 13 | 91.5 | 5 | 62 | 199 | 235 | 220 | 20 |

SIRCOVER ATS Bypass 800 to 1600 A


| Rating (A) | Overall dimensions | Switch body |  | Switch mounting M 8p. | Connection |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A 8p. | J 8p. | J1 8p. |  | T | V | X 8p. | Y | Z | AA | BA | AC |
| 800 | 1055 | 510.5 | 189 | 1021 | 80 | 60.5 | 81.5 | 7 | 84.5 | 321 | 268 | 26.5 |
| 1000 | 1055 | 510.5 | 189 | 1021 | 80 | 60.5 | 81.5 | 7 | 84.5 | 321 | 268 | 26.5 |
| 1250 | 1320 | 643 | 195 | 1286 | 120 | 44 | 88 | 8 | 85.5 | 288 | 258 | 15 |
| 1600 | 1320 | 643 | 195 | 1286 | 120 | 44 | 88 | 8 | 85.5 | 288 | 258 | 15 |

Dimensions for external handles SIRCOVER ATS Bypass 125 to 630 A


SIRCOVER ATS Bypass 800 to 1600 A


## new The new ATyS M range: safe and reliable solutions

RTSE
(Remotely operated)

ATSE
(Automatic)


## The advantages

## Secure operation

- Electrical and mechanical interlocking for optimum safety.
- Positive break indication with two mechanical switch position indicators for clear and secure use.
- Padlocking in the 0 position enables the lockout function on each product.
- Padlocking in 3 positions can also be configured prior to installation.
- Permanent indication of product availability thanks to the Watchdog relay, which constantly monitors the product operating conditions (ATyS g M and ATyS p M).


## High performance

- On-load making and isolation for using a single product with any load type, including inductive loads (AC 33).
- Immunity to control voltage fluctuations thanks to stable positions and power supply only required during switching.
- Excellent dynamic withstand for improved safety when closing on a short-circuit.
- Extremely low electrical blackout time (ATyS d M < 90ms) guaranteed thanks to the electromagnetic actuator technology used with rotary self-cleaning contacts.


## Intuitive

- Manual emergency control: The product can be operated quickly and safely using an emergency handle (motor installed or removed).
- Simple selection of operating mode (Auto/ Manual) using an integrated selector.


## Rapid commissioning

- ATyS d M: No configuration required.
- ATyS t M and ATyS g M: Configuration in just a few minutes using a screwdriver.
- ATyS p M: Simplified configuration (EASY CONFIG software and LCD screen on the device).


## Easy to install

- Two switching devices mounted side by side for easy access to cabling with installation in a standard 18 module enclosure (a product with a very low depth).
- Quick and easy mounting on a DIN rail or mounting plate.
- Simplified wiring thanks to the cage terminals and dedicated bridging bars that allows to create a common outgoing connection whilst retaining the cage terminal connections.


## Performance

IEC 60947-6-1 / GB 14048-11
$>A C 32 B$ - up to 160A
$>$ AC 33B - up to 125A
$>A C 33 i B$ - up to 160A

IEC 60947-3
> AC 23B - up to 160A

## A fully compact solution

- All-in-one solution, with minimum risk of incorrect mounting or wiring.
- Highly reliable thanks to the compliance with IEC 60947-6-1 governing transfer switching equipment.
- Simplified ordering process: a single reference for the complete solution.



## ATyS d M

Remotely operated Transfer Switching Equipment from 40 to 160 A


## Function

ATyS d M are single-phase or three-phase transfer switches that are remotely controlled using volt-free contacts from an external controller. They are modular products with positive break indication. They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

## Advantages

## Secure operation

ATyS M products provide electrical and mechanical interlocks for optimum safety. The product also provides positive break indication, confirming switch position with dual mechanical indicators for increased safety.

## Fast transfer

ATyS d M are based on coil and technology with rotative contacts, therefore ensuring an extremely short black-out duration (<90ms).

## High performance

ATyS M are compliant with IEC 60947-6-1, the standard governing transfer switches. The AC 33B characteristic up to 125 A makes it possible to use the same product for resistive and inductive loads.

## Immune to network voltage fluctuations

The power supply of the ATyS d M is only active during transfer. As the product is based on stable positions, it is not affected by network voltage fluctuations.

## The solution for

> Applications with an external ATS/AMF controller
> Building Management Systems (BMS)


## Strong points

> Secure operation
> High performance
> Fast transfer times
> Immune to network voltage fluctuations

## Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3
$>$ GB 14048.11

## Approvals and certifications

## KEMA NEUR



Modes of operation


Easy selection of AUTO/ MANUAL mode


Back-up manual operation


Padlocking facility

## What you need to know

## Electrical control

The positions are controlled by volt-free contacts which may come from an external automatic ATS controller (such as the ATyS C30), PLC, BMS or even simply using pushbuttons.
The power section switch positions are stable, with or without a supply present.

## Control logic

Two types of control logic are available:

- Impulse logic
- A switching command of at least 60 ms is necessary to initiate operation.
- Command I and II have priority over command 0.
- The first command (order) received (I or II) has priority as long as it remains present.




## Power supply

ATyS d M is equipped with two independent 230 VAC auxiliary power supply inputs ( $176-288 \mathrm{VAC}$ ), $50 / 60 \mathrm{~Hz}(45 / 65 \mathrm{~Hz})$.
These two power supplies may be and are intended to be connected individually. One to switch I and the other to switch II:

- Power supply 101-102 must be available to reach position I
- Power supply 201-202 must be available to reach position II.

The use of a dual power supply (DPS), or an external uninterrupted power supply module, provides the full security of the 3 position commands with the availability of any supply.
In this case, both supply inputs must be connected in parallel in order to be supplied.

References

| Rating (A) | No. of poles | ATyS d M | Bridging bars | Voltage sensing and power supply tap | Terminal shrouds | Auxiliary contact block |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 2 P | 93232004 | $\begin{gathered} 2 P \\ 13092006 \\ 4 \mathrm{P} \\ 13094006 \end{gathered}$ | $\begin{gathered} 2 \text { pieces } \\ 13994006 \end{gathered}$ | $\begin{gathered} 2 \text { pieces } \\ 2294 \text { 4016 }^{(1)} \end{gathered}$ | $1^{\text {st }} \mathrm{A} / \mathrm{C}$ block included |
|  | 4 P | 93234004 |  |  |  |  |
| 63 | 2 P | 93232006 |  |  |  |  |
|  | 4 P | 93234006 |  |  |  |  |
| 80 | 2 P | 93232008 |  |  |  | $2^{\text {nd }}$ A/C block Separate common points $1309 \mathbf{0 0 0 1}^{(2)}$ |
|  | 4 P | 93234008 |  |  |  |  |
| 100 | 2 P | 93232010 |  |  |  |  |
|  | 4 P | 93234010 |  |  |  |  |
| 125 | 2 P | 93232012 |  |  |  | Linked common points 13090011 |
|  | 4 P | 93234012 |  |  |  |  |
| 160 | 2 P | 93232016 | 13092016 |  |  |  |
|  | 4 P | 93234016 | 13094016 |  |  |  |

[^0]

Function
ATyS t M and ATyS g M are three-phase (4P) automatic transfer switches with positive break indication. The ATyS g M is also available in 2P for single phase applications.
The ATyS t M and ATyS g M both include ATyS d M functionality together, with an integrated controller for automatic transfer dedicated to mains/mains applications (ATyS t M) and mains/ genset applications (ATyS g M). They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

## Advantages

## Fast commissioning

ATyS t M and g M transfer switches offer significant time saving during commissioning (the process takes 2 to 3 minutes). Thanks to the design that allows commissioning through just one potentiometer (4 on the ATyS g M) and four DIP switches, a screwdriver is all that is required to configure the parameters.

ATyS g M: specifically designed for mains/ genset applications
The ATyS g M integrated controller has been designed to provide specific functions for these applications (genset startup, tests on load...) together with the monitoring of the voltage and frequency of both sources for three-phase and single-phase networks.

ATyS t M: specifically designed for mains/ mains applications
The ATyS t M integrated controller has been designed to provide all the functions necessary for these applications (operation with or without priority, preferred source selection) together with the monitoring of the voltage and frequency of both sources for three-phase networks.

## Secured configuration settings

In order to prevent any risk of unintended change to the configured settings, a sealable cover is available as an accessory.

## The solution for

> High Rise Buildings
> Data centre
> Healthcare buildings


## Strong points

> Fast commissioning
> ATyS d M functions plus an integrated ATS controller dedicated to mains/mains or mains/genset applications
> Secured configuration settings

## Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3
$>$ GB 14048.11


Approvals and certifications ${ }^{(1)}$
KEMA
KeUr
(1) Product reference on request.

## ATySt M-ATyS g M

Automatic Transfer Switching Equipment
from 40 to 160 A

What you need to know
The ATyS t M and ATyS g M are automatic transfer switching equipment that include a fully integrated ATS controller. These products are self powered from incoming supplies: 230 VAC (176-288 VAC), $50 / 60 \mathrm{~Hz}(45 / 65 \mathrm{~Hz})$.

References

| ATyS t M |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rating (A) | No. of poles | Network (VAC) | ATyS M | Bridging bars | Voltage sensing and power supply tap | Terminal shrouds | Auxiliary contact block | Sealable cover |
| 40 A | 4 P | 230/400 | 93444004 | $\begin{gathered} 4 \mathrm{P} \\ 13094006 \end{gathered}$ | $\begin{gathered} 2 \text { pieces } \\ 13994006 \end{gathered}$ | 2 pieces $2294 \mathbf{4 0 1 6}^{(1)}$ | 1 piece <br> Separate common points $13090^{0001}{ }^{(2)}$ Linked common points $13090011^{(2)}$ | 13590000 |
| 63 A | 4 P | 230/400 | 93444006 |  |  |  |  |  |
| 80 A | 4 P | 230/400 | 93444008 |  |  |  |  |  |
| 100 A | 4 P | 230/400 | 93444010 |  |  |  |  |  |
| 125 A | 4 P | 230/400 | 93444012 |  |  |  |  |  |
| 160 A | 4 P | 230/400 | 93444016 | 13094016 |  |  |  |  |

(1) The three-phase version (4P), for upstream and downstream protection, please order the reference twice. For the single-phase version (2P) please order the reference once. (2) 1 NO/NC contact block for positions I, $O$ and II.

| ATyS g M |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rating (A) | No. of poles | Network (VAC) ${ }^{(3)}$ | ATyS g M | Bridging bars | Voltage sensing and power supply tap | Terminal shrouds | Auxiliary contact block | Sealable cover |
| 40 A | 2 P | 230 | 93532004 | $\begin{gathered} 2 \mathrm{P} \\ 13092006 \\ 4 \mathrm{P} \\ 13094006 \end{gathered}$ | $\begin{gathered} 2 \text { pieces } \\ 13994006 \end{gathered}$ | $\begin{gathered} 2 \text { pieces } \\ 2294 \text { 4016 }^{(1)} \end{gathered}$ | 1 piece Separate common points $13090001^{(2)}$ <br> Linked common points $13090011^{(2)}$ | $\begin{gathered} 2 \mathrm{P} \\ 13592000 \\ 4 \mathrm{P} \\ 13590000 \end{gathered}$ |
|  | 4 P | 230/400 | 93544004 |  |  |  |  |  |
| 63 A | 2 P | 230 | 93532006 |  |  |  |  |  |
|  | 4 P | 230/400 | 93544006 |  |  |  |  |  |
| 80 A | 2 P | 230 | 93532008 |  |  |  |  |  |
|  | 4 P | 230/400 | 93544008 |  |  |  |  |  |
| 100 A | 2 P | 230 | 93532010 |  |  |  |  |  |
|  | 4 P | 230/400 | 93544010 |  |  |  |  |  |
| 125 A | 2 P | 230 | 93532012 |  |  |  |  |  |
|  | 4 P | 230/400 | 93544012 |  |  |  |  |  |
| 160 A | 2 P | 230 | 93532016 | 13092016 |  |  |  |  |
|  | 4 P | 230/400 | 93544016 | 13094016 |  |  |  |  |

[^1]

## Function

ATyS p M are single-phase or three-phase automatic transfer switches with positive break indication.
Functions include ATyS t M and ATyS g M capability, with additional programmable parameters and a triggering function. A product model with communication is available. They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

## Advantages

Flexible programming
ATyS p M time delays and inputs/outputs are completely configurable, hence enabling the easy monitoring of specific applications (load shedding, test...) and the definition of an operating cycle specifically adapted to your application.

## Trip function

ATyS p M provides a function for transferring the load to the 0 position in case of loss of both power supply sources (tripping). In this way the load is protected from issues due to source instability.

## Communication and configuration

A specific version of ATyS p M is available with integrated Modbus communication. This gives acces to most product data (status, voltages, frequencies...).
A user friendly configuration software is also available free (Easyconfig) to configure, view and save all the parameters in the ATyS p M.

## Remote control interface

Specifically designed for installations where the product is enclosed, the remote interface displays product status on the front panel (D10) or displays and controls with access to programming (D20).

## The solution for

> High Rise Buildings
> Data centre
> Healthcare buildings
> Banking and Insurance
$>$ Transportation (Airports, tunnels...)


## Strong points

$>$ Flexible programming
$>$ Trip function
$>$ Modbus communication and configuration software
$>$ Remote control interface

## Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3
$>$ GB 14048.11


## Approvals and certifications

KEMA
KeUr


## What you need to know

The ATyS p M are automatic transfer switching equipment that include a fully integrated ATS controller. These products are self powered from incoming supplies: 230 VAC (160-305 VAC), $50 / 60 \mathrm{~Hz}(45 / 65 \mathrm{~Hz})$. Automatic products are all equipped with a sequence logic. Here is an example of the sequence logic in case of loss and return of the preferred source.


## Easyconfig

The Easyconfig software is the ideal solution to save time and simplify complex configuration.

Typical parameters that can be set:

- the application type,
- voltage/frequency thresholds,
- timers,
- inputs/outputs...


| ATyS p M |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rating (A) | No. of poles | Network (VAC) ${ }^{(3)}$ | ATyS p M | ATyS p M + com | Bridging bars | Voltage sensing and power supply tap | Terminal shrouds | Auxiliary contact block | Remote interface |
| 40 A | 4 P | 230/400 | 93644004 | 93844004 | $\begin{gathered} 4 \mathrm{P} \\ 13094006 \end{gathered}$ | $\begin{gathered} 2 \text { pieces } \\ 13994006 \end{gathered}$ | $\begin{gathered} 2 \text { pieces } \\ 2294 \text { 4016 }^{(1)} \end{gathered}$ | 1 pieceSeparate commonpoints$1309 \mathbf{0 0 0 1}^{(2)}$ | $\begin{gathered} \text { D10 } \\ 95992010 \end{gathered}$ |
| 63 A | 4 P | 230/400 | 93644006 | 93844006 |  |  |  |  |  |
| 80 A | 4 P | 230/400 | 93644008 | 93844008 |  |  |  |  |  |
| 100 A | 4 P | 230/400 | 93644010 | 93844010 |  |  |  |  |  |
| 125 A | 4 P | 230/400 | 93644012 | 93844012 |  |  |  | Linked common points | $95992020$ |
| 160 A | 4 P | 230/400 | 93644016 | 93844016 | 13094016 |  |  | $13090011^{(2)}$ |  |

[^2]
# ATyS M range <br> ATyS d M, ATyS $\boldsymbol{t}$ M, ATyS $g$ M, ATyS $p$ M <br> from 40 to 160 A 

## Accessories

## Bridging bars

## Use

Used to bridge the outgoing common connection between switch I and switch II. The bridging bar does not reduce the connection capacity of the cage terminals.

| Rating (A) | No. of poles | Reference |
| :--- | :---: | :---: |
| $40 \ldots 125$ | $2 P$ | $1309 \mathbf{2 0 0 6}$ |
| 160 | $2 P$ | 13092016 |
| $40 \ldots 125$ | $4 P$ | 13094006 |
| 160 | $4 P$ | 13094016 |

Use
It allows connection of $2 \mathrm{x} \leq 1.5 \mathrm{~mm}^{2}$ voltage sensing or power cables.

The single-pole voltage sensing tap can be mounted in any of the terminals (incoming) without reducing their connecting capacity.

| Rating (A) | Pack | Reference |
| :---: | :---: | :---: |
| $40 \ldots 160$ | 2 pieces | 13994006 |



## Terminal shrouds

## Use

Protection against direct contact with terminals or connecting parts.
Advantages of the terminal shrouds
Perforations built in to the terminal shrouds allow remote thermographic inspection without the need to remove the shrouds. Tamper-proof seals can be fitted for increased security.

| Rating (A) | Position | Reference |
| :--- | :---: | :---: |
| $40 \ldots 160$ | top and bottom | 2294 4016 $^{(1)}$ |

## Mounting

For upstream and downstream protection of three-phase products (4 P), please order the reference twice. For the single-phase products (2 $P$ ) please order the reference once.
(1) Reference composed of 2 pieces (4P).

## Auxiliary contact

Use
Auxiliary contacts for position indication. A maximum of two auxiliary contact blocks can be fitted to each product.
Each auxiliary contact block integrates 3
NO/NC auxiliary contacts, one per position (I, 0, II).

| Rating (A) | Type | Reference |
| :--- | :---: | :---: |
| $40 \ldots 160$ | Separate common connection | $1309 \mathbf{0 0 0 1}$ |
| $40 \ldots 160$ | Linked common connection | $1309 \mathbf{0 0 1 1}$ |



## Sealable cover

Use
Prevents access to the ATyS t M and g M configuration panel (seals and screws are included).

| Rating (A) | No. of poles | Reference |
| :---: | :---: | :---: |
| $40 \ldots 160$ | $2 P$ | $1359 \mathbf{2 0 0 0}$ |
| $40 \ldots 160$ | 4 P | $1359 \mathbf{0 0 0 0}$ |



Polycarbonate enclosure
Use
Dedicated to the installation of a three-phase ATyS M, it enables easy integration of a compact transfer switch solution.

| Rating (A) | $\mathbf{H} \times \mathbf{W} \times \mathrm{D}(\mathrm{mm})$ | Reference |
| :--- | :--- | :--- |


| $40 \ldots 160$ | $385 \times 385 \times 193$ | 13099006 |
| :--- | :--- | :--- | :--- |



Extension box for polycarbonate enclosure

## Use

Combined with the polycarbonate enclosure, the extension unit provides additional space in order to connect $70 \mathrm{~mm}^{2}$ cables to the ATyS M with ease.

| Rating (A) | Reference |
| :--- | :---: |
| $40 \ldots 160$ | $1309 \mathbf{9 0 0 7}$ |



# ATyS M range <br> ATyS d M, ATyS $\boldsymbol{t}$ M, ATyS $g$ M, ATyS $p$ M <br> from 40 to 160 A 

## Accessories (continued)

Residential enclosure
Use
Dedicated to the implementation of a single-phase ATyS M, this plastic enclosure provides a compact IP41 transfer switch solution with easy integration.

| Rating (A) | $\mathbf{H} \times \mathbf{W} \times \mathbf{D}(\mathbf{m m})$ | Reference |
| :--- | ---: | ---: |
| $40 \ldots 160$ | $410 \times 305 \times 150$ | $1309 \mathbf{9 0 5 6}$ |



## Auto-transformer

Use
For use with ATyS M in 400 VAC three-phase applications that does not have a distributed neutral. The ATyS M includes integrated sensing and power supply circuits, therefore a neutral connection is required for 400 VAC three-phase applications. When no neutral connection is available this autotransformer ( $400 / 230 \mathrm{VAC}, 400 \mathrm{VA}$ ) provides the 230 VAC required for the ATyS to function.

| Rating (A) | Reference |
| :--- | :---: |
| $40 \ldots 160$ | 15994121 |



## Double power supply - DPS

## Use

Allows an ATyS d M to be supplied by two $230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ networks to have full control in terms of transfer to and from any position with any one of the power supplies available.

## Input

- The input is considered "active" from 200 VAC.
- Maximum voltage: 288 VAC.
- Internal protection: each input is fuse protected 3.15 A.
- Connection on terminals: max. $6 \mathrm{~mm}^{2}$.
- Modular device: 4 module width.

| Input 1 | Input 2 | Output |
| :---: | :---: | :---: |
| 230 VAC | 0 VAC | 230 VAC (Input 1) |
| 0 VAC | 230 VAC | 230 VAC (Input 2) |
| 230 VAC | 230 VAC | 230 VAC (Input 1) |
| O VAC | 0 VAC | 0 VAC |
| Description of accessories |  | Reference |
| DPS |  | 15994001 |



Remote interfaces for ATyS p M

To remotely display source availability and position indication typically used on the front of a panel when the ATyS M is enclosed.
The remote interface is powered directly from the ATyS M via the RJ45 connection cable.
Maximum cable length: 3 m .

## D10

To display source availability and position indication on the front panel of an enclosure.

Protection degree: IP21 D20
In addition to the functions of the ATyS D10, the D20 displays measurements and enables control and configuration from the front of the display panel.
Protection degree: IP21

## Door mounting

2 holes Ø 22.5.
ATyS M connection via RJ45 cable, not isolated. Cable not provided


Connection cable for remote interfaces

Use
To connect between a remote interface (type D10 or D20) and an ATyS p M.

Reference
95992010
95992020

## Characteristics:

RJ45 8 wire straight-through, non isolated cable. Length 3 m .

| Type | Length | Reference |
| :--- | :---: | :---: |
| RJ45 cable | 3 m | 15992009 |



## Power connection terminals

## Use

The power connection terminals allow conversion of the cage terminals into bolt-on type connection terminals, enabling connection of up to two $35 \mathrm{~mm}^{2}$ cables or one $70 \mathrm{~mm}^{2}$ cable. Compatible with aluminium terminals. Each power connection terminal is provided with separation screens.

| Rating (A) | Reference |
| :--- | :--- |
| $40 \ldots 160$ | 1399 4017 $^{(1)}$ |

[^3]

# ATyS M range <br> ATyS d M, ATyS $\boldsymbol{t}$ M, ATyS $g$ M, ATyS $p$ M <br> from 40 to 160 A 

Enclosed transfer switch solutions
General characteristics

- Adapted to mechanical risk and dust hazard.
- Integrated bridging bar
- Protection degree: IP3x or IP54.
- Colour: RAL 7035.
- Cable gland plates: top and bottom.
- Material: steel, thickness 1.2 mm.
- Coating: epoxy polyester powder.
- Wall mounting: 4 fixing lugs supplied loose.
- Door: hinged metal door, front door cut out $327.4 \times 47.6 \mathrm{~mm}$.
- Door lock: 3 mm double bar key (included).

References

## ATyS d M

| Rating (A) | No. of poles | IP 3X <br> Reference | IP 54 <br> Reference |
| :--- | :---: | :---: | :---: |
| 40 | 4 P | $1823 \mathbf{4 0 0 4}$ | $1823 \mathbf{4 0 0 5}$ |
| 63 | 4 P | $1823 \mathbf{4 0 0 6}$ | $1823 \mathbf{4 0 0 7}$ |
| 80 | 4 P | $1823 \mathbf{4 0 0 8}$ | $1823 \mathbf{4 0 0 9}$ |
| 100 | 4 P | $1823 \mathbf{4 0 1 0}$ | 18234011 |
| 125 | 4 P | $1823 \mathbf{4 0 1 2}$ | $1823 \mathbf{4 0 1 3}$ |
| 160 | 4 P | $1823 \mathbf{4 0 1 6}$ | $1823 \mathbf{4 0 1 7}$ |

ATyS g M

| Rating (A) | No. of poles | IP 3X <br> Reference | IP 54 <br> Reference |
| :--- | :---: | :---: | :---: |
| 40 | $4 P$ | 1854 4004 | 1854 4005 |
| 63 | $4 P$ | 18544006 | 18544007 |
| 80 | $4 P$ | 18544008 | 18544009 |
| 100 | $4 P$ | 18544010 | 18544011 |
| 125 | $4 P$ | 18544012 | 18544013 |
| 160 | $4 P$ | 1854 4016 | 18544017 |



ATyS p M + COM RS485

| Rating (A) | No. of poles | IP 3X <br> Reference | IP 54 Reference |
| :---: | :---: | :---: | :---: |
| 40 | 4 P | 18844004 | 18844005 |
| 63 | 4 P | 18844006 | 18844007 |
| 80 | 4 P | 18844008 | 18844009 |
| 100 | 4 P | 18844010 | 18844011 |
| 125 | 4 P | 18844012 | 18844013 |
| 160 | 4 P | 18844016 | 18844017 |

Accessories
Customer fit

| Description | Reference |
| :--- | :--- |
| Solid neutral | 13099008 |
| Kit IP54 | 13994016 |

Dimensions


Dimensions


Terminals and connections
Single-phase ATyS d M


Three-phase ATyS d M


## ATyS M range

ATyS d M, ATySt M, ATyS g M, ATyS $p$ M
from 40 to 160 A

Terminals and connections
Three-phase"ATyS t M


1 preferred source (network)
2 alternate source (network)
1: position 0 control
2: preferred source selection
3: automatic mode inhibition
6: availability S1 or S2
A: bridging bar (accessories)
B: auxiliary contact block - 1 NO/NC
contact per position I, 0, II (accessories)


1 preferred source
2 alternate source
1: manual retransfer / priority change
2: test on load
3: automatic mode inhibition
6: product availability relay
7: genset start / stop control

A: bridging bar (accessories)
B: auxiliary contact block - $1 \mathrm{NO} / \mathrm{NC}$ contact per position I, 0, II (accessories)

Three-phase ATyS p M


[^4]1-2-3: programmable inputs
4-5-6: programmable outputs
7: genset start / stop control
8: RJ 45 for connecting a D10/D20 remote interface
9: RS485 for communication on versions with COM.
A: bridging bar (accessories)
B: auxiliary contact block - 1 NO/NC contact per position I, 0 , II (accessories)

Characteristics according to IEC 60947-3 and IEC 60947-6-1
40 to 160 A

| Thermal current $\mathrm{I}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ | 40 A | 63 A | 80 A | 100 A | 125 A | 160 A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{M}$ (power circuit) | 800 | 800 | 800 | 800 | 800 | 800 |
| Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}(\mathrm{kV})$ (power circuit) | 6 | 6 | 6 | 6 | 6 | 6 |
| Rated insulation voltage $U_{i}(\mathrm{~V})$ (operation circuit) | 300 | 300 | 300 | 300 | 300 | 300 |
| Rated impulse withstand voltage $\mathrm{U}_{\text {limp }}(\mathrm{KV}$ ) (operation circuit) - ATyS dM | 4 | 4 | 4 | 4 | 4 | 4 |
| Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}(\mathrm{kV}$ ) (operation circuit) - $\mathrm{ATyS} \mathrm{t} \mathrm{M}, \mathrm{g} \mathrm{M}$ and pM | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
| Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1 |  |  |  |  |  |  |
| Rated voltage Utilisation category | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ | A/B ${ }^{(1)}$ |
| 415 VAC AC-31 A/ AC-31 B | 40/40 | 63/63 | 80/80 | 100/100 | 100/125 | 100/160 |
| 415 VAC AC-32 A/AC-32 B | 40/40 | 63/63 | 80/80 | 100/100 | 100/125 | 100/160 |
| 415 VAC AC-33 A/AC-33 B | -/40 | -/63 | -/80 | -/100 | -/125 | -/125 |
| Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3 |  |  |  |  |  |  |
| Rated voltage Utilisation category | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ | A/B ${ }^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ |
| 415 VAC AC-20 A/AC-20 B | 40/40 | 63/63 | 80/80 | 100/100 | 125/125 | 160/160 |
| 415 VAC AC-21 A/AC-21 B | 40/40 | 63/63 | 80/80 | 100/100 | 125/125 | 160/160 |
| 415 VAC AC-22 A/AC-22 B | 40/40 | 63/63 | 80/80 | 100/100 | 125/125 | 160/160 |
| 415 VAC AC-23 A/AC-23 B | 40/40 | 63/63 | 80/80 | 100/100 | 125/125 | 125/160 |
| $690 \mathrm{VAC}^{(5)}$ AC-21 A/AC-21 B | 40/40 | 63/63 | 80/80 | 100/100 | 125/125 | 160/160 |
| $690 \mathrm{VAC}^{(5)}$ AC-22 A/AC-22 B | 40/40 | 63/63 | 80/80 | 80/80 | 100/125 | 100/125 |
| $690 \mathrm{VAC}^{(5)}$ AC-23 A/AC-23 B | 40/40 | 63/63 | 63/63 | 80/80 | 80/80 | 80/80 |
| Fuse protected short-circuit withstand (kA rms prospective) |  |  |  |  |  |  |
| Prospective short-circuit current (kA rms) | 50 | 50 | 50 | 50 | 50 | 40 |
| Associated fuse rating (A) | 40 | 63 | 80 | 100 | 125 | 160 |

Circuit breaker protected short-circuit withstand with any circuit breaker that ensures tripping in less than $0.3 s^{(4)}$

| Rated short-time withstand current $0.3 \mathrm{~s} \mathrm{I}_{\text {cw }}$ (kA rms) | 7 | 7 | 7 | 7 | 7 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Short-circuit capacity (without protection)

| Rated short-time withstand current 1 s .1 lcw (kA rms) | 4 | 4 | 4 | 4 | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated peak withstand current (kA peak) ${ }^{(2)}$ | 17 | 17 | 17 | 17 | 17 | 17 |
| Connection |  |  |  |  |  |  |
| Minimum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | 10 | 10 | 10 | 10 | 10 | 10 |
| Maximum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | 70 | 70 | 70 | 70 | 70 | 70 |
| Tightening torque (Nm) | 5 | 5 | 5 | 5 | 5 | 5 |
| Switching time ${ }^{(5)}$ |  |  |  |  |  |  |
| $1-0$ or III-0 (ms) ${ }^{(3)}$ | 45 | 45 | 45 | 45 | 45 | 45 |
| I- \|| or II - | (ms) ${ }^{(3)}$ | 180 | 180 | 180 | 180 | 180 | 180 |
| Duration of "electrical blackout" I- II (ms) minimum | 90 | 90 | 90 | 90 | 90 | 90 |
| Power supply |  |  |  |  |  |  |
| Power supply 230 VAC mini / maxi (VAC) (ATyS d M, t M and g M) | 176/288 | 176/288 | 176/288 | 176/288 | 176/288 | 176/288 |
| Power supply voltage 230 VAC min / max (VAC) (ATyS p M) | 160/305 | 160/305 | 160/305 | 160/305 | 160/305 | 160/305 |
| Control supply power demand |  |  |  |  |  |  |
| Nominal power (VA) | 6 | 6 | 6 | 6 | 6 | 6 |
| Max current under 230 VAC ( A ) - ATyS d M, t M and g M | 30 | 30 | 30 | 30 | 30 | 30 |
| Max current under 230 VAC (A) - ATyS p M | 20 | 20 | 20 | 20 | 20 | 20 |
| Mechanical characteristics |  |  |  |  |  |  |
| Durability (number of operating cycles) | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 |
| Weight of single-phase versions - without packaging (kg) | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
| Weight of single-phase versions - with packaging (kg) | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
| Weight of three-phase versions - without packaging (kg) | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
| Weight of three-phase versions - with packaging (kg) | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 | 4.2 |

[^5](4) Value for coordination with any circuit breaker that ensures tripping in less than 0.3 s . For coordination with specific circuit-breaker references, higher short-circuit current values are available. Please consult us.
(5) At rated voltage - excluding time delays and loss of source detection time when applicable.

## A range of transfer switches from 40 to 125 A

## RTSE <br> (Remotely operated)



Three application types


## The advantages

## Safe and reliable

- An extended lifetime thanks to a switching principle based on stable positions
- Positive break indication.
- Mechanical position interlocking.
- Stable power supply to the loads because the ATyS S does not require power supply for the position to be maintained.
- Various power supply voltages are available: 12 or $24 / 48$ VDC and 230 VAC or 2x230 VAC


## $54^{3}$ Easy to use

- Manual emergency control:

The product can be controlled quickly and safely using an emergency handle (motor installed or removed).

- Simple selection of the operating mode (Auto/Manual/Padlocked) using an integrated selector.


## Total integration

- Integrated and tested solution: components factory assembled and wired.
- Reliable product: compliance with IEC 60947-6-1, the standard governing transfer switches.


## Easy

## maintenance

- Self-cleaning sliding contacts.
- Easy replacement of the motor unit, even during on load operation.

Cost-saving

- Low power consumption thanks to a switching principle based on stable positions: power is only required during transfer.
- Easy and fast installation: only four fixing points, three connectors and the power cables to connect.
- Shorter bridging bars that are consequently more economical than any other solution on the market.


## Compact design

$>$ Combining two switches mounted back to back and being only 197 mm wide, the ATyS S offers significant space saving when compared with a side by side solution.

## ATyS S - ATyS d S <br> Remotely operated Transfer Switching Equipment from 40 to 125 A

## new



## Function

ATyS S products are 4 pole remotely operated transfer switches with positive break indication. They enable the on load transfer of two three-phase supplies via remote volt-free contacts, from either an external automatic controller, using pulse logic, or a switch.
They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

## Advantages

## Extensive power supply range

The ATyS S is available in four supply versions, each with a broad range (+/-30\%),
The four versions are:

- 12 VDC power supply.
- 24/48 VDC power supply.
- 230 VAC single power supply
- $2 \times 230$ VAC dual power supply


## Safety and reliability

ATyS S products use stable position technology, ensuring constant pressure on the contacts and preventing premature faults, In addition, they do not require a power supply to maintain position, thus protecting their loads from voltage fluctuations.

## Easy integration

ATyS S products can be easily installed inside enclosures.
Their design, and in particular their compact size, enables integration within most 200 mm deep enclosures.

## Simplified maintenance

Maintenance can be carried out easily under load, with manual operation still available.
The control and motorisation section can be replaced simply by removing 4 screws, with no work required on the installation cabling.

## ATyS d S: Dual power supply

In addition to the functions offered by the ATyS S, the ATyS d S incorporates supply redundancy without the need for additional wiring. This is obtained by integrating a double supply (2 independent supplies) directly within the product.

## The solution for

> Genset <90kVA
$>$ Heating systems
> Climate control
$>$ Ventilation systems
$>$ Telecommunications


## Strong points

> Extensive power supply range
> Safety and reliability
> Easy integration
> Simplified maintenance
> ATyS d S: Dual power supply

## Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3
$>$ GB 14048-11


# ATyS S - ATyS d S 

Remotely operated Transfer Switching Equipment
from 40 to 125 A

References

| ATyS S |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rating (A) | No. of poles | Power supply | ATyS S | Bridging bars | Terminal shrouds | Voltage tap | Terminal retainer | DIN rail |
| 40 A | 4 P | 24/48 VDC | 95064004 | $\begin{gathered} 4 \mathrm{P} \\ 95094013 \end{gathered}$ | Source side 2 pieces 95944012 <br> Load side 2 pieces 95949012 |  | $\begin{gathered} 2 \text { pieces } \\ 95994003 \end{gathered}$ | 4 modules 95994002 |
|  | 4 P | 12 VDC | 95054004 |  |  |  |  |  |
|  | 4 P | 230 VAC | 95034004 |  |  | 95994001 |  |  |
| 63 A | 4 P | 24/48 VDC | 95064006 |  |  |  |  |  |
|  | 4 P | 12 VDC | 95054006 |  |  |  |  |  |
|  | 4 P | 230 VAC | 95034006 |  |  | 95994001 |  |  |
| 80 A | 4 P | 24/48 VDC | 95064008 |  |  |  |  |  |
|  | 4 P | 12 VDC | 95054008 |  |  |  |  |  |
|  | 4 P | 230 VAC | 95034008 |  |  | 95994001 |  |  |
| 100 A | 4 P | 24/48 VDC | 95064010 |  |  |  |  |  |
|  | 4 P | 12 VDC | 95054010 |  |  |  |  |  |
|  | 4 P | 230 VAC | 95034010 |  |  | 95994001 |  |  |
| 125 A | 4 P | 24/48 VDC | 95064012 |  |  |  |  |  |
|  | 4 P | 12 VDC | 95054012 |  |  |  |  |  |
|  | 4 P | 230 VAC | 95034012 |  |  | 95994001 |  |  |

ATyS d S
$\left.\begin{array}{|l|c|c|c|c|c|c|c|c|}\hline \text { Rating (A) } & \text { No. of poles } & \text { Power supply } & \text { ATyS d S } & \text { Bridging bars } & \begin{array}{c}\text { Terminal } \\ \text { shrouds } \\ \text { Source side }\end{array} & \text { Voltage tap } & \text { Terminal retainer } & \text { DIN rail } \\ \hline 40 \mathrm{~A} & 4 \mathrm{P} & 2 \times 230 \text { VAC } & 9513 \mathbf{4 0 0 4} & & & \\ \hline 63 \mathrm{~A} & 4 \mathrm{P} & 2 \times 230 \text { VAC } & 9513 \mathbf{4 0 0 6} & & 4 \mathrm{P} & 9594012\end{array}\right)$

## ATyS S-ATySdS

Remotely operated Transfer Switching Equipment from 40 to 125 A

## Accessories

## Bridging bars

Use
For bridging power terminals on the top or bottom side of the switch. One piece required per pole.

| Rating (A) | No. of poles | Reference |
| :---: | :---: | :---: |
| $40 \ldots 125$ | 4 P | 95094013 |



## Voltage tap

Use
Enables the required power supply for ATyS S 230 VAC and ATyS d S products to be tapped directly from the product's incoming power terminals. Can also be utilised in applications without neutral, to provide 400 VAC to the autotransformer.

| Rating (A) | Reference |
| :--- | :---: |
| $40 \ldots 125$ | 95994001 |

95994001


## Terminal retainer

Use
These clips have a dual function: - to prevent direct access to the power supply and control terminals and - to secure these connector terminals.

| Rating (A) | Pack | Reference |
| :--- | :---: | :---: |
| $40 \ldots 125$ | 2 pieces | 95994003 |



## Terminal shrouds



Autotransformer 400/230 VAC
Use
For applications without neutral, this autotransformer provides the 230 VAC required to power these ATyS products.

| Rating (A) | Reference |
| :--- | ---: |
| $40 \ldots 125$ | 95994004 |

DIN rail

## Use

This 4-module DIN rail can be installed directly on the front of the ATyS S and can be utilised, for example, for the installation of a surge protection device.

| Rating (A) | Reference |
| :--- | :---: |
| $40 \ldots 125$ | 95994002 |

## Spares

## Motorisation unit

Use
The motorisation module of the ATyS S can be easily replaced in case of problems, even when the load is supplied.

| Rating (A) | ATyS S | ATyS S | ATyS S | ATyS d S |
| :--- | :---: | :---: | :---: | :---: |
| 12 VDC | 24/48 VDC | 230 VAC | 2x230 VAC |  |
| 40 | 9505 5004 | 95065004 | 95035004 | 95135004 |
| 63 | $9505 \mathbf{5 0 0 6}$ | 95065006 | 95035006 | 95135006 |
| 80 | 95055008 | 95065008 | 95035008 | 95135008 |
| 100 | 95055010 | 95065010 | 95035010 | 95135010 |
| 125 | 95055012 | 95065012 | 95035012 | 95135012 |

## Switching unit

Use
References to be used for replacing the switching module of ATyS S products.

| Rating (A) | References |
| :--- | :---: |
| 40 | 95091004 |
| 63 | 95091006 |
| 80 | 95091008 |
| 100 | 95091010 |
| 125 | 95091012 |
|  |  |

## Manual emergency operation handle

## Use

This handle can be used on the product whether the motor unit is mounted or not.

| Rating (A) | References |
| :--- | :---: |
| $40 \ldots 125$ | 95995012 |

## Connector kit

## Use

This kit, including all the connector types for the different products, can be ordered in case of loss or breaking of one connector.

| Rating (A) | References |
| :--- | :---: |
| $40 \ldots 125$ | 95090002 |



## ATyS S-ATySdS

Remotely operated Transfer Switching Equipment
from 40 to 125 A

## Enclosed transfer switch solutions

General characteristics

## ATyS S and ATyS d S

- Adapted to mechanical risk and dust hazard.
- Protection degree: IP3X (IP54 optional)
- Colour: RAL 7035, epoxy polyester powder.
- Wall mounting: 4 fixing lugs supplied loose.
- Connection of cables: top or bottomDDoor lock: 3 mm double bar key (included).

References

| Rating (A) | No. of poles | ATyS S <br> $\mathbf{1 2 ~ V D C ~}$ | ATyS d S <br> $\mathbf{2 x 2 3 0}$ VAC |
| :--- | :---: | :---: | :---: |
| 40 | $4 P$ | 3505 4004 | 3513 4004 |
| 63 | $4 P$ | 35054006 | 35134006 |
| 80 | $4 P$ | 35054008 | 35134008 |
| 100 | $4 P$ | 35054010 | 35134010 |
| 125 | $4 P$ | 35054012 | 35134012 |



## Accessories

Factory fitted

| Description | Reference |
| :--- | :--- |
| LEDs indicating if voltage is present | 95990005 |
| LEDs for position indication | 95990006 |
| TESTS/AUTO modes selection (with C3O option) | 95990007 |
| Priority selection (with C30 option) | 95990008 |
| Surge arresters for enclosure (SURGYS D40) | 95990010 |
| Three-phase kit without neutral | 959900012 |
| Kit for auxiliary output (3Ph+N) 16A | 95990016 |
| Copper bar connection kit | 95990019 |
| Kit IP54 | 95990020 |
| IPXXB protection screen (door open) | 95990021 |
| Battery charger | $9599 \mathbf{0 0 2 4}$ |
| Kit for voltage sensing on terminals | 95990028 |
| Auxiliary kit for control on terminals | $9599 \mathbf{0 0 2 9}$ |
| Kit for ATyS C30 control/command | $9599 \mathbf{0 0 3 0}$ |

Customer fit

| Description | Reference |
| :--- | :---: |
| Copper bar connection kit | 95990018 |
| Kit IP54 | 95990020 |
| IPXXB protection screen (door open) | 95990021 |

## Dimensions



# ATyS S - ATyS d S 

Characteristics according to IEC 60947-3 and IEC 60947-6-1

| 40 to 125 A |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Thermal current $\mathrm{I}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ | 40 A | 63 A | 80 A | 100 A | 125 A |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{V})$ (power circuit) | 800 | 800 | 800 | 800 | 800 |
| Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}(\mathrm{kV})$ (power circuit) | 6 | 6 | 6 | 6 | 6 |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{V})$ (operation circuit) | 300 | 300 | 300 | 300 | 300 |
| Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}(\mathrm{kV})$ (operation circuit) | 4 | 4 | 4 | 4 | 4 |
| Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1 |  |  |  |  |  |
| Rated voltage $\mid$ Utilisation category | A/B | A/B | A/B | A/B | A/B |
| 415 VAC AC-31 B | 40 | 63 | 80 | 100 | 125 |
| 415 VAC AC-32 B | 40 | 63 | 80 | 80 | 80 |
| Rated operational currents $\mathrm{I}_{\mathrm{e}}(A)$ according to IEC 60947-3 |  |  |  |  |  |
| Rated voltage Utilisation category | A/B | A/B | A/B | A/B | A/B |
| 415 VAC AC-20 A / AC-20 B | 40/40 | 63/63 | 80/80 | 100/100 | 125/125 |
| 415 VAC AC-21 A / AC-21 B | 40/40 | 63/63 | 80/80 | 100/100 | 100/125 |
| 415 VAC AC-22 A / AC-22 B | 40/40 | 63/63 | 80/80 | 100/100 | 100/100 |
| 415 VAC AC-23 A / AC-23 B | -/40 | -/63 | -/63 | -/63 | -/63 |
| Fuse protected short-circuit withstand (kA rms prospective) |  |  |  |  |  |
| Prospective short-circuit current (kA rms) | 50 | 50 | 50 | 25 | 15 |
| Associated fuse rating (A) | 40 | 63 | 80 | 100 | 125 |

Circuit breaker protected short-circuit withstand with any circuit breaker that ensures tripping in less than $0.3 s^{(3)}$

| Rated short-time withstand current $0.3 \mathrm{~s} \mathrm{I}_{\mathrm{cw}}$ (kA rms) | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Short-circuit capacity as per IEC 60947-6-1 |  |  |  |  |  |
| Rated short-time withstand current 0.03 s . (kA) | 5 | 5 | 5 | 5 | - |
| Rated short-circuit making capacity $\mathrm{I}_{\mathrm{cm}}$ (kA peak) | 7.65 | 7.65 | 7.65 | 7.65 | - |


| Short-circuit capacity as per IEC 60947-3 (without protection) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rated short-time withstand current 1 s .1 lcw (kA rms) | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
| Rated peak withstand current (kA peak) | 12 | 12 | 12 | 12 | 12 |

Connection

| Maximum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | 50 | 50 | 50 | 50 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Tightening torque mini / maxi ( Nm ) | 1.2/3 | 1.2/3 | 1.2/3 | 1.2/3 | 1.2/3 |

## Switching time (Standard setting)

| 1-0 or II-0 (ms) | 500 | 500 | 500 | 500 | 500 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \| - || or II - I (ms) | 1000 | 1000 | 1000 | 1000 | 1000 |
| Duration of "electrical blackout" I- I\| (ms) minimum | 500 | 500 | 500 | 500 | 500 |

Power supply

| Power supply 12 VDC $\min / \max (V D C)$ | $9 / 15$ | $9 / 15$ | $9 / 15$ | $9 / 15$ | $9 / 15$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Power supply 24/48 VDC min / max (VDC) | $17 / 62$ | $17 / 62$ | $17 / 62$ | $17 / 62$ | $17 / 62$ |
| Power supply 230 VAC $\min / \max (V A C)$ | $160 / 310$ | $160 / 310$ | $160 / 310$ | $160 / 310$ | $160 / 310$ |

Control supply power demand

| Power supply 12 VDC inrush / nominal (VA) | 200/40 | 200/40 | 200/40 | 200/40 | 200/40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Power supply 24/48 VDC inrush / nominal (VA) | 200/40 | 200/40 | 200/40 | 200/40 | 200/40 |
| Supply 230 VAC inrush / nominal (VA) | 200/40 | 200/40 | 200/40 | 200/40 | 200/40 |
| Mechanical characteristics |  |  |  |  |  |
| Durability (number of operating cycles) | 25000 | 25000 | 25000 | 25000 | 25000 |
| Weight ATyS S and ATyS d S 4 P (kg) | 3 | 3 | 3 | 3 | 3 |

(1) Value for coordination with any circuit breaker that ensures tripping in less than $0.3 s$. For coordination with specific circuit-breaker references, higher short-circuit current values are available. Please consult us.

## ATyS S-ATySdS

Remotely operated Transfer Switching Equipment
from 40 to 125 A

Terminals and connections
ATyS S DC version


1 preferred source
2 altemate source
1: position 0 control
2: position I control
3: position |l control
4: auxiliary contact, closed when the switch is in position 0
5: auxiliary contact, closed when the switch is in position II 6: auxiliary contact, closed when the switch is in position I 7 : power supply 12 VDC ( $9-15$ VDC) or 24 VDC / 48 VDC (17-62 VDC) depending on the version.

ATyS S: 230 VAC


1 preferred source
2 alternate source
1 : position 0 control
2: position I control
3: position II control
4: auxiliary contact, closed when the switch is in position 0
5: auxiliary contact, closed when the switch is in position II
6: auxiliary contact, closed when the switch is in position I
7: power supply kit: 230 VAC (160-310 VAC)

ATyS d S: $2 \times 230$ VAC


1 preferred source
2 alternate source
1 : position 0 control
2 : position I control
3: position Il control
4: auxiliary contact, closed when the switch is in position 0
5: auxiliary contact, closed when the switch is in position II
6: auxiliary contact, closed when the switch is in position I
7 : power supply kit I: 230 VAC (160-310 VAC)
8 : power supply kit II: 230 VAC (160-310 VAC)

Dimensions


## Connection terminal



## The ATySrange: intuitive, reliable and robust solutions

## A complete range of automatic and remotely operated transfer switches from 125 to 3200 A

To meet the increasing demands of its users, the ATyS range is constantly evolving to offer new functions. Five product versions are available to find the right solution perfectly adapted to your application.


## The advantages

## - Safe <br> operation

- Permanent indication of product availability (Watchdog relay).
- Positive break indication.
- Mechanical position interlocking.
- Padlocked mode to secure maintenance operations (lockout).
- Secure access to the product configuration.

Robust integrated solution

## A single product with all the functions:

- Integrated and tested solution: components factory assembled and wired.
- Greater reliability: compliance with IEC 60947-6-1, the standard governing transfer switches.


## Proven SOCOMEC technology:

- Combination of two "back-to-back" (load break switch) PC class switches.
- Switching based on stable positions guaranteeing constant pressure on the contacts at all times.
- SIRCO contact technology used in numerous products for over 40 years.

Intuitive
use

- Manual emergency control: The product can be controlled quickly and safely using an emergency handle (motor installed or removed).
- User friendly selection of the operating mode (Auto/Manual) using an integrated selector.

IEC 60947-6-1/GB 14048-11

- AC 31B - up to 3200 A
- AC 32B - up to 2000 A
- AC 33B - up to 1250 A

IEC 60947-3

- AC 23B - up to 1250 A


## Rapid

commissioning

- ATyS and ATyS d: no configuration required.
- ATyS t and ATyS g: configuration in just a few minutes using a screwdriver.
- ATyS p: simplified configuration (EASY CONFIG software and LCD display on the device).
- ATyS t, g, p: auto-configuration of the network parameters.

Easy
maintenance

- Self-cleaning sliding contacts.
- Easy replacement of the motor and the electronic unit, even on load.


ATyS r-ATyS d
Remotely operated Transfer Switching Equipment from 125 to 3200 A

## The solution for

> Applications with an external ATS/AMF controller
> Building Management Systems (BMS)


## Strong points

> Watchdog relay to check product availability
> Integrated auxiliary contacts
> Extended power supply range
> ATyS d: integrated dual power supply

## Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3


## External automatic controller

$>$ The ATyS $r$ and ATyS d are compatible with our ATyS C30 external controllers (for mains/mains and mains/ genset applications) and ATyS C40 controllers (for genset/genset applications).

References


[^6](2) To fully shroud front, rear, top and bottom 4 references required.

To shroud front switch top and bottom 2 references required.
(3) 2 pieces: one for top side and another for bottom side.
(4) Factory mounting only.

## Technical information

> Accessories: see page 70.
> Characteristics: see page 76.
> Terminals and connections: see page 78.
> Dimensions: see page 80.


## Strong points

> Rapid commissioning
$>$ ATyS d with integrated controller for functions dedicated to mains/mains or mains/genset applications

## Conformity to standards

## Function

ATyS t and g are three-phase automatic transfer switches, 3 or 4 poles, with positive break indication. They incorporate all the functions offered by the ATyS d, as well as functions intended for mains/mains application (ATyS t) and mains/genset applications (ATyS g). In automatic mode they enable the monitoring of, and the on load changeover switching between, two power supply sources, in accordance with the parameters configured via two potentiometers and four DIP switches.
They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

## Advantages

## Rapid commissioning

ATyS $t$ and $g$ switches offer significant time saving during commissioning (process takes 2 to 3 minutes). Thanks to the design that allows commissioning through just two potentiometers (4 on the ATyS g) and four DIP switches, a screwdriver is all that is required to configure the parameters.
For added simplicity, they also offer an autoconfiguration function which enables automatic adjustment of the rated voltage and frequency.

ATyS t: specifically designed for mains/ mains applications
The ATyS t integrated controller has been designed to provide only the functions required for these applications (operation with or without priority, preferred source selection) together with the monitoring of the voltage and frequency of both sources, for threephase and single-phase networks.

ATyS g: specifically designed for mains/ genset applications
The ATyS g integrated controller has been designed to provide specific functions for these applications (genset startup, on-load or off-load tests...) together with the monitoring of the voltage and frequency of both sources for three-phase and single-phase networks.

References

| Rating (A) / <br> Frame size | No. of poles | ATyS | ATyS g | Bridging bars | Voltage sensing and power supply tap | Terminal shrouds | Terminal screens | Auxiliary contact |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 125 A / B3 | 3 P | 95433012 | 95533012 | $\begin{gathered} 3 P \\ 41093019 \\ 4 P \\ 41094019 \end{gathered}$ | $\begin{gathered} 3 P \\ 15593012 \\ 4 \mathrm{P} \\ 15594013^{(1)} \end{gathered}$ | $\begin{gathered} 3 \mathrm{P} \\ 26943014^{(3)} \\ 4 \mathrm{P} \\ 26944014^{(3)} \end{gathered}$ | $\begin{gathered} 3 P \\ 15093012 \\ 4 \mathrm{P} \\ 15094012 \end{gathered}$ | 1599 00022 ${ }^{(5)}$ |
|  | 4 P | 95434012 | 95534012 |  |  |  |  |  |
| 160 A / B3 | 3 P | 95433016 | 95533016 |  |  |  |  |  |
|  | 4 P | 95434016 | 95534016 |  |  |  |  |  |
| 200 A / B3 | $3 P$ | 95433020 | 95533020 |  |  |  |  |  |
|  | 4 P | 95434020 | 95534020 |  |  |  |  |  |
| 250 A / B4 | $3 P$ | 95433025 | 95533025 | $\begin{gathered} 3 P \\ 41093025 \\ 4 \mathrm{P} \\ 41094025 \end{gathered}$ | $\begin{gathered} 3 P \\ 15593025 \\ 4 \mathrm{P} \\ 15594026^{(2)} \end{gathered}$ | $\begin{gathered} 3 P \\ 26943021^{(3)} \\ 4 \mathrm{P} \\ 26944021^{(3)} \end{gathered}$ | $\begin{gathered} 3 P \\ 15093025 \\ 4 \mathrm{P} \\ 15094025 \end{gathered}$ |  |
|  | 4 P | 95434025 | 95534025 |  |  |  |  |  |
| 315 A / B4 | 3 P | 95433031 | 95533031 | $\begin{gathered} 3 P \\ 41093039 \\ 4 \mathrm{P} \\ 41094039 \end{gathered}$ |  |  |  |  |
|  | 4 P | 95434031 | 95534031 |  |  |  |  |  |
| $400 \mathrm{~A} / \mathrm{B} 4$ | 3 P | 95433040 | 95533040 |  | $\begin{gathered} 3 P \\ 15593040 \end{gathered}$ |  |  |  |
|  | 4 P | 95434040 | 95534040 |  | $\begin{gathered} 4 \mathrm{P} \\ 15594041^{(2)} \end{gathered}$ |  |  |  |
| 500 A / B5 | $3 P$ | 95433050 | 95533050 | $\begin{gathered} 3 P \\ 41093050 \\ 4 \mathrm{P} \\ 41094050 \end{gathered}$ | $\begin{gathered} 3 P \\ 15593063 \\ 4 \mathrm{P} \\ 15594064^{(2)} \end{gathered}$ | $\begin{gathered} 3 P \\ 26943051^{(3)} \\ 4 \mathrm{P} \\ 26944051^{(3)} \end{gathered}$ | $\begin{gathered} 3 \mathrm{P} \\ 15093063^{(4)} \\ 4 \mathrm{P} \\ 1509 \mathbf{4 0 6 3}{ }^{(4)} \end{gathered}$ |  |
|  | 4 P | 95434050 | 95534050 |  |  |  |  |  |
| $630 \mathrm{~A} / \mathrm{B} 5$ | $3 P$ | 95433063 | 95533063 | $\begin{gathered} 3 P \\ 41093063 \\ 4 \mathrm{P} \\ 41094063 \end{gathered}$ |  |  |  |  |
|  | 4 P | 95434063 | 95534063 |  |  |  |  |  |
| $800 \mathrm{~A} / \mathrm{B6}$ | 3 P | 95433080 | 95533080 | $\begin{gathered} 3 P \\ 41093080 \\ 4 \mathrm{P} \\ 41094080 \end{gathered}$ | $\begin{gathered} 3 P \\ 15593080 \\ 4 \mathrm{P} \\ 1559 \mathbf{4 0 8 1}^{(2)} \end{gathered}$ |  | $\begin{gathered} 3 P \\ 15093080^{(4)} \\ 4 \mathrm{P} \\ 1509 \mathbf{4 0 8 0} \mathbf{0}^{(4)} \end{gathered}$ | 1599 0032 ${ }^{(5)}$ |
|  | 4 P | 95434080 | 95534080 |  |  |  |  |  |
| 1000 A / B6 | $3 P$ | 95433100 | 95533100 |  |  |  |  |  |
|  | 4 P | 95434100 | 95534100 |  |  |  |  |  |
| 1250 A / B6 | 3 P | 95433120 | 95533120 | $\begin{gathered} 3 \mathrm{P} \\ 41093120 \\ 4 \mathrm{P} \\ 41094120 \end{gathered}$ | $\begin{gathered} 3 \mathrm{P} \\ 15593120 \\ 4 \mathrm{P} \\ 15594121^{(2)} \end{gathered}$ |  |  |  |
|  | 4 P | 95434120 | 95534120 |  |  |  |  |  |
| 1600 A / B7 | $3 P$ | 95433160 | 95533160 | $\begin{gathered} 3 P \\ 41093160 \\ 4 \mathrm{P} \\ 41094160 \end{gathered}$ | $\begin{gathered} 3 P \\ 15593160 \\ 4 \mathrm{P} \\ 15594161^{(2)} \end{gathered}$ |  | $\begin{gathered} 3 \mathrm{P} \\ 15093160^{(4)} \\ 4 \mathrm{P} \\ 1509 \mathbf{4 1 6 0} \end{gathered}$ |  |
|  | 4 P | 95434160 | 95534160 |  |  |  |  |  |
| 2000 A / B8 | 3 P | 95433200 | 95533200 | (1) | $\begin{gathered} 3 P \\ 15593200 \\ 4 P \\ 15594201^{(2)} \end{gathered}$ |  | $\begin{gathered} 3 P \\ 15093200^{(4)} \\ 4 \mathrm{P} \\ 15094200^{(4)} \end{gathered}$ | d'origine |
|  | 4 P | 95434200 | 95534200 |  |  |  |  |  |
| 2500 A / B8 | $3 P$ | 95433250 | 95533250 |  |  |  |  |  |
|  | 4 P | 95434250 | 95534250 |  |  |  |  |  |
| 3200 A / B8 | $3 P$ | 95433320 | 95533320 |  |  |  |  |  |
|  | 4 P | 95434320 | 95534320 |  |  |  |  |  |

(1) Neutral on the left for neutral on the right, see page 71.
(2) To fully shroud front, rear, top and bottom 4 references required.

To shroud front switch top and bottom 2 references required.
(3) 2 pieces: one for top side and another for bottom side.
(4) Factory mounting only.

## Technical information

> Accessories: see page 70.
> Characteristics: see page 76.
$>$ Terminals and connections: see page 78.
$>$ Dimensions: see page 80.


## Function

ATyS p are three-phase automatic transfer switches, 3 or 4 poles, with positive break indication. They incorporate all the functions offered by the ATyS tand g , as well as functions designed for power management and communication.
In automatic mode they enable the monitoring of, and the on load changeover switching between, two power supply sources, in accordance with the parameters configured via an LCD display or via the communication.
They are intended for use in low voltage power supply systems where a brief interruption of the load supply is acceptable during transfer.

## Advantages

## Recording of events

ATyS p switches enable effective monitoring of your installation thanks to timestamped event recording.
Events can be retrieved and read via the communication system.

## Optional communication modules

The ATyS p offers communication functions thanks to the addition of optional modules, such as the RS485 module for Modbus communication or the Ethernet module, which includes a Webserver.

## Configuration software

Software (Easyconfig) is available enabling the ATyS p parameters to be easily configured and the existing configuration to be saved.

## Power measurements

ATyS p products are particularly suited to energy management and monitoring. In addition to their integrated power and energy measurement functions (with a $2 \%$ accuracy level), programmable inputs/outputs can be utilised to control load shedding based on a load level or tariff.

Possibility to set periodic genset startup
ATyS p switches offer additional functions for maintenance. They include the programmed genset starting function which allows the starting dates and operating times to be configured.

## The solution for

> Applications requiring power management and communication.


## Strong points

$>$ Optional communication modules
$>$ Recording of events
$>$ Configuration software
> Power measurements
$>$ Possibility to set periodic genset startup

## Conformity to standards

$>$ IEC 60947-6-1
$>$ IEC 60947-3


## Webserver

The Webserver function comprises HTML pages embedded in the Ethernet communication module.
These pages can be accessed via an internet browser, simply by entering the IP address.
The webserver offers the following functionalities:
$>$ Display of source status and switch position
$>$ Display of the main measurements
> Extraction of the latest logged events
> Display of the product configuration

Front panel


1. Slots for optional plug-in modules.
2. Backlit LCD display.
3. Source availability and position indication LEDs.
4. Pushbuttons for programming and mode selection.

## Communication and configuration

Easyconfig
The Easyconfig software is the ideal solution to save time and simplify complex configuration.

Typical parameters that can be set:

- the application type,
- voltage/frequency thresholds,
- timers,
- inputs/outputs...



## Web Server

Thanks to optional modules, ATyS p can communicate in Modbus and Ethernet protocols.
The Ethernet communication module includes the Webserver function for access to the ATySp via an internet browser.

The Webserver function enables:

- display of source status and switch position,
- display of voltage measurements,
- display of parameters set,
- access to the list of logged events.



## ATyS $p$

Automatic Transfer Switching Equipment
from 125 to 3200 A

References

(1) Neutral on the left (for neutral on the right, see page 72).
(2) To fully shroud front, rear, top and bottom 4 references required

To shroud front switch top and bottom 2 references required.
(3) 2 pieces: one for top side and another for bottom side.
(4) Factory mounting only.

(1) Factory mounting only.

## ATyS range <br> ATyS r, ATyS d, ATyS t, ATyS g, ATyS p <br> from 125 to 3200 A

## Accessories

## Terminal shrouds

Use
IP2X protection against direct contact with terminals or connecting parts.

## Advantages

Perforations allow remote thermographic inspection without the need to remove the shrouds.

(1) To shroud front switch top and bottom 2 references required.
(2) To fully shroud front, rear, top and bottom 4 references required.

## Terminal screens

Use
Top and bottom protection against direct contact with terminals or connection parts.

For upstream and downstream protection, order the reference once.

| Rating (A) | Frame size | No. of poles | Position | Reference |
| :---: | :---: | :---: | :---: | :---: |
| 125... 200 | B3 | 3 P | top / bottom | 15093012 |
| $125 . . .200$ | B3 | 4 P | top / bottom | 15094012 |
| $250 . . .400$ | B4 | 3 P | top / bottom | 15093025 |
| $250 . . .400$ | B4 | 4 P | top / bottom | 15094025 |
| $500 . . .630$ | B5 | 3 P | top / bottom | 15093063 |
| $500 . . .630$ | B5 | 4 P | top / bottom | 15094063 |
| $800 . . .1250$ | B6 | 3 P | top / bottom | 15093080 |
| $800 . . .1250$ | B6 | 4 P | top / bottom | 15094080 |
| 1600 | B7 | $3 P$ | top / bottom | 15093160 |
| 1600 | B7 | 4 P | top / bottom | 15094160 |
| 2000 ... 3200 | B8 | 3 P | top / bottom | 15093200 |
| 2000 ... 3200 | B8 | 4 P | top / bottom | 15094200 |

## Bridging bars

Use
For bridging power terminals on the top or bottom side of the switch.
One piece required per pole.


Copper bar connection kits

Use
Enables:

- connection between the two power terminals of the same pole for 2000 to 3200 A ratings (Fig. 1 and Fig. 2)
- top or bottom bridging connection (Fig. 3).

For 3200 A rating, the connection pieces (part A) are delivered bridged from factory.

Bolt sets must be ordered separately. The user manual for these specific accessories can be downloaded from www.socomec.com.

Top or bottom flat connection - Fig. 1

|  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Rating (A) | Frame size | Piece | Quantity to order <br> per pole |  |
| $2000 \ldots 2500$ | B8 | Connection - part A | 2 | Reference |
| $2000 \ldots 2500$ | B8 | Bolt set - part B | 2 | 26191200 |
| 3200 | B8 | Connection - part A |  | 26991200 |
| 3200 | B8 | Bolt set - part B | 2 | included |

Top or bottom edgewise connection - Fig. 2

| Rating (A) | Frame size | Piece | Quantity to order per pole ${ }^{(1)}$ | Reference |
| :---: | :---: | :---: | :---: | :---: |
| 2000 ... 2500 | B8 | Connection - part A | 2 | 26191200 |
| 2000 ... 2500 | B8 | T piece - part C | 2 | $26291200{ }^{(2)}$ |
| 2000 ... 2500 | B8 | Bracket- part D | 2 | 2639 1200 ${ }^{(2)}$ |
| 3200 | B8 | Connection - part A |  | included |
| 3200 | B8 | T piece - part C | 2 | $26291200{ }^{(2)}$ |
| 3200 | B8 | Bracket- part D | 2 | 2639 1200 ${ }^{(2)}$ |


| Top or bottom bridging connection - Fig. 3 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Rating (A) | Frame size | Piece | Quantity to order per pole ${ }^{(1)}$ | Reference |
| 2000... 2500 | B8 | Connection - part A | 2 | 26191200 |
| 2000 ... 2500 | B8 | Bolt set - part B | 2 | 26991200 |
| 2000 ... 2500 | B8 | Bar - part E | 1 | 4109 0320 ${ }^{(2)}$ |
| 2000 ... 2500 | B8 | T piece - part C | 1 | 2629 1200 ${ }^{(2)}$ |
| 3200 | B8 | Connection - part A |  | included |
| 3200 | B8 | Bolt set - part B | 2 | 26991200 |
| 3200 | B8 | Bar - part E | 1 | 4109 0320 ${ }^{(2)}$ |
| 3200 | B8 | T piece - part C | 1 | $26291200^{(2)}$ |

(1) Example for 3 pole device equipped upstream only: Order 3 times the indicated quantities (2) Bolt set is provided with the accessories,

Fig. 1




## Solid neutral

## Use

The connection kit enables the connection between the input and output neutrals, without any need to switch the neutral.

| Rating (A) | Frame size | Reference |
| :--- | :---: | :---: |
| $125 \ldots 200$ | B3 | $9509 \mathbf{0 0 1 2}$ |
| $200 \ldots 315$ | B4 | $9509 \mathbf{0 0 2 5}$ |
| 400 | B4 | $9509 \mathbf{0 0 4 0}$ |
| $500 \ldots 630$ | B5 | $9509 \mathbf{0 0 6 3}$ |
| $800 \ldots 1000$ | B6 | $9509 \mathbf{0 0 8 0}$ |
| 1250 | B6 | 95090120 |
| 1600 | B7 | $9509 \mathbf{0 1 6 0}$ |

## ATyS range

ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
from 125 to 3200 A

## Accessories (continued)

Autotransformer 400/230 VAC
Use
For applications without neutral, this autotransformer

| Rating (A) | Frame size | Reference |
| :--- | :---: | :---: |
| $125 \ldots 3200$ | B3 $\ldots$ B8 | 15994064 | provides the 230 VAC required to power these ATyS products.

DC power supply

| Use | Rating (A) | Frame size | Operating voltage | Reference |
| :--- | :--- | :--- | :--- | :---: |
| Allows an ATyS to be supplied from a 12 or 24 VDC source. | $125 \ldots 3200$ | B3 $\ldots$ B8 | 12 VDC /230 VAC | 15995012 |
| To be positioned as close as possible to the DC power supply source. | $125 \ldots 3200$ | B3 $\ldots$ B8 | 24 VDC /230 VAC | $1599 \mathbf{5 1 1 2}$ |

Voltage sensing and power supply kit

Use
For power supply and voltage measurement (4 wire, three-phase) for the ATyS $\mathrm{t}, \mathrm{g}$ and p .
Routing of the conductors is controlled, which means that no specific protective device is necessary for these connections.

The kit can be fitted on the top or bottom of the switch.
Note: the 3-pole version does not integrate the power supply.

| For ATyS $\mathbf{t}, \mathbf{g}$ and $\mathbf{p - 3}$ poles <br> Rating (A) | Frame size | Reference |
| :--- | :---: | :---: |
| $125 \ldots 200$ | B3 | $1559 \mathbf{3 0 1 2}$ |
| 250 | B4 | $1559 \mathbf{3 0 2 5}$ |
| $315 \ldots 400$ | B4 | $1559 \mathbf{3 0 4 0}$ |
| $500 \ldots 630$ | B5 | $1559 \mathbf{3 0 6 3}$ |
| $800 \ldots 1000$ | B6 | $1559 \mathbf{3 0 8 0}$ |
| 1250 | B6 | $1559 \mathbf{3 1 2 0}$ |
| 1600 | B7 | $1559 \mathbf{3 1 6 0}$ |
| $2000 \ldots 3200$ | B8 | $1559 \mathbf{3 2 0 0}$ |


| For ATyS $\mathrm{t}, \mathrm{g}$ and p-4 poles |  |  |  |
| :---: | :---: | :---: | :---: |
| Rating (A) | Frame size | Neutral on the right <br> Reference | Neutral on the left Reference |
| 125... 200 | B3 | 15594012 | 15594013 |
| 250 | B4 | 15594025 | 15594026 |
| $315 . . .400$ | B4 | 15594040 | 15594041 |
| $500 \ldots 630$ | B5 | 15594063 | 15594064 |
| $800 . .1000$ | B6 | 15594080 | 15594081 |
| 1250 | B6 | 15594120 | 15594121 |
| 1600 | B7 | 15594160 | 15594161 |
| 2000 ... 3200 | B8 | 15594200 | 15594201 |

## Voltage relay

## Use

The ATyS DS is a voltage relay for monitoring a single three-phase power supply source

| Rating (A) | Reference |
| :--- | :---: |
| DS | 192 X 0056 |



## Door protective surround

Use
When direct access to the ATyS front face (mode selection, manual operation, display....) is required, the door surround can be utilised to provide a clean and safe finish to the panel's cut-out.

| For ATyS |  |  |
| :--- | :---: | :---: |
| Rating (A) | Frame size | Reference |
| $125 \ldots 630$ | B3 $\ldots$ B5 | $1529 \mathbf{0 0 1 2}$ |
| $800 \ldots 3200$ | B6 $\ldots$ B8 | $1529 \mathbf{0 0 8 0}$ |
| For ATyS d, t, g and p |  |  |
| Rating (A) | Frame size | Reference |
| $125 \ldots 630$ | B3 $\ldots$ B5 | $1539 \mathbf{0 0 1 2}$ |
| $800 \ldots 3200$ | B6 $\ldots$ B8 | $1539 \mathbf{0 0 8 0}$ |



Auxiliary contact
Use

Pre breaking and signalling of positions I and II: each reference provides a single factory fitted NO/NC contact for both positions.

Low level auxiliary contacts: please consult us. $1 \mathrm{NO} / \mathrm{NC}$ contact per position is factory fitted.

| Rating (A) | Frame size | Nominal current (A) | Operating current $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 250 \text { VAC } \\ \text { AC-13 } \end{gathered}$ | $\begin{gathered} 400 \text { VAC } \\ \text { AC-13 } \end{gathered}$ | $\begin{gathered} 24 \text { VDC } \\ \text { DC-13 } \end{gathered}$ | 48 VDC DC-13 |
| 125... 3200 | B3 ... B8 | 16 | 12 | 8 | 14 | 6 |
| Rating (A) |  | Frame size | Type of mounting |  | Reference |  |
| 125... 630 |  | B3 ... B5 | Customer fit |  | 1599 0502 ${ }^{(1)}$ |  |
| 125... 630 |  | B3 ... B5 | Factory fitted |  | 1599 0002 ${ }^{(1)}$ |  |
| 800 .. 1600 |  | B6 ... B7 | Customer fit |  | 1599 0532 ${ }^{(1)}$ |  |
| 800 .. 1600 |  | B6 ... B7 | Factory fitted |  | 1599 0032 ${ }^{(1)}$ |  |
| 2000 ... 3200 |  | B8 | - |  | included |  |

(1) Up to 2 auxiliary contacts can be ordered.

## Mounting spacers

Use
Increases the distance between the rear power terminals and the backplate by 1 cm

This accessory may also be used to replace the original mounting spacers.
per spacer.

| Rating (A) | Frame size | Description of accessories | Reference |
| :--- | :---: | :---: | :---: |
| $125 \ldots 630$ | B3 $\ldots$ B5 | 1 set of 2 spacers | $1509 \mathbf{0 0 0 1}$ |



3 position padlocking (I-0-II)
Use
Enables the ATyS to be padlocked in the 3 positions 0, I and II (factory fitted).

| Rating (A) | Frame size | Reference |
| :--- | :---: | :---: |
| $125 \ldots 630$ | B3 $\ldots$ B5 | $9599 \mathbf{0 0 0 3}$ |
| $800 \ldots 3200$ | B6 $\ldots$ B8 | $9599 \mathbf{0 0 0 4}$ |



Key handle interlocking system

Use
With the product in manual mode, it enables locking in position 0 using a RONIS EL11AP lock (factory fitted).

As standard, locking in position 0.
Optional padlocking in 3 positions: locking in position I, 0 or II.

| Rating (A) | Frame size | Reference |
| :--- | :---: | :---: |
| $125 \ldots 630$ | B3 ... B5 | 95991006 |
| $800 \ldots 3200$ | B6 ... B8 | 95991004 |



## ATyS range

ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
from 125 to 3200 A

## Accessories (continued)

Current transformers

## Use - For ATyS p only

Used with ATyS p switches, current transformers enable information to be obtained on the load current.

## Reference

Please see our general catalogue or our website www.socomec.com


## Plug-in optional modules

## Use - For ATyS p only

Number of usable modules per product:
A maximum of four modules can be fitted to each ATyS p, however with the installation of either Ethernet communication module only two additional modules can be installed. Only one pulse output, one analogue output and one communication module can be installed.

RS485 MODBUS ${ }^{\circledR}$ communication

- RS485 link with MODBUS® ${ }^{\circledR}$ protocol (speed up to 38400 bauds).


## 2 inputs - 2 outputs

- Each module has 2 programmable inputs and 2 programmable outputs available.
Ethernet communication
- Ethernet link with MODBUS/TCP or MODBUS
RTU over TCP.
- Embedded Ethernet Webserver software.


## Ethernet communication with RS485

MODBUS gateway

- Ethernet link with MODBUS/TCP or MODBUS RTU over TCP.
- Connection of 1 to 247 RS485 MODBUS slaves.
- Embedded Ethernet Webserver software.


## Analogue outputs

- Outputs assignable to: 31, In, $3 \mathrm{~V}, 3 \mathrm{U}, \mathrm{F}, \pm \Sigma \mathrm{P}, \pm \Sigma \mathrm{Q}, \Sigma \mathrm{S}$.


## Pulse outputs

- 2 configurable pulse outputs (type, weight and duration) on $\pm \mathrm{kWh}, \pm k v a r h$ and kVAh.

| Description of accessories | Reference |
| :--- | :---: |
| RS485 MODBUS communication | 48250092 |
| 2 inputs / 2 outputs | $1599 \mathbf{2 0 0 1}$ |
| Ethernet communication (embedded Ethernet webserver software) | 48250203 |
| Ethernet communication + RS485 MODBUS gateway (embedded Ethernet webserver software) | 48250204 |
| Analogue outputs | $4825 \mathbf{0 0 9 3}$ |
| Pulse outputs | $4825 \mathbf{0 0 9 0}$ |

## Remote interfaces

Use
To remotely display source availability and position indication typically used on the front of a panel when the product is enclosed.
Interfaces are powered from the ATyS transfer switch via the RJ45 connection cable.
Maximum cable length: 3 m .
D10 - for ATyS d, t and g
To display source availability and position indication on the front panel of an enclosure. Protection degree: IP21.

## D20 - for ATyS p

In addition to the functions of the ATyS D10, the D20 displays measurements and enables control and configuration from the front of a panel.
Protection degree: IP21.

## Door mounting

2 holes $\varnothing$ 22.5. ATyS transfer switch connection via RJ45 cable, not isolated.
Cable available as an accessory. Interfaces are powered from the ATyS


Drillings


Connection cable for remote interfaces
Use
To connect between a remote interface (type D10 or D20) and an ATyS transfer switch (ATyS d, t, g or p).
Characteristics

| For ATyS d, $\mathbf{t}, \mathbf{g}$ and $\mathbf{p}$ |  |  |
| :--- | :---: | :---: |
| Type | Length | Reference |
| RJ45 cable | 3 m | $1599 \mathbf{2 0 0 9}$ |

## Sealable cover

Use - for ATyS t and g
Prevents access to the ATyS t and g configuration potentiometers and DIP switches (seals supplied).

| Rating (A) | Frame size | Reference |
| :--- | :---: | :---: |
| $125 \ldots 3200$ | B3 $\ldots \mathrm{B} 8$ | $9599 \mathbf{0 0 0 0}$ |



## Auto/Manual key selector

Use
Replaces the standard Auto/Manual selector knob with a key selector, providing added security by preventing unauthorised use of product.

| Rating (A) | Frame size | Reference |
| :--- | :---: | :---: |
| $125 \ldots 3200$ | B3 ... B8 | 95991007 |



## Double power supply - DPS

Use
Allows an ATyS r to be supplied by two 230 VAC, $50 / 60 \mathrm{~Hz}$ networks. Input

- The input is considered "active" from 200 VAC.
- Maximum voltage: 288 VAC.
- Internal protection: each input is fuse protected 3.15 A .
- Connection on terminals: max. $6 \mathrm{~mm}^{2}$.
- Modular device: 4 module width.

| Description of accessories | Reference |
| :--- | :---: |
| DPS | 15994001 |



```
ATyS range
ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
from 125 to 3200 A
```


## Spare parts

Electronic module
The electronic module of ATyS $d, t, g$ and $p$ can
be easily replaced in case of problems, even
when the load is supplied.

| Product model | References |
| :--- | :---: |
| ATyS d | $9539 \mathbf{2 0 0 1}$ |
| ATyS t | $9549 \mathbf{2 0 0 1}$ |
| ATyS g | $9559 \mathbf{2 0 0 1}$ |
| ATyS p | $9579 \mathbf{2 0 0 1}$ |



## Motorisation module

The motorisation module of ATyS $r, d, t, g$ and $p$ can be easily replaced in case of problems, even when the load is supplied.

| Rating | References |
| :--- | :---: |
| $125 \ldots 200 \mathrm{~A}$ | 95095020 |
| $250 \ldots 400 \mathrm{~A}$ | 95095040 |
| $500 \ldots 630 \mathrm{~A}$ | 95095063 |
| $800 \ldots 1250 \mathrm{~A}$ | 95095120 |
| 1600 A | 95095160 |
| $2000 \ldots 3200 \mathrm{~A}$ | 95095320 |



## Switching module

References to be used for replacing the switching module of ATyS $r, d, t, g$ or $p$, correspond to the SIRCOVER AC references. Please refer to page 16.


## Enclosed transfer switch solution

## General characteristics

## ATyS d and ATyS p

- Adapted to mechanical risk and dust hazard.
- Material: XC steel, thickness 2 mm.
- Protection degree: IP54.
- Coating: polyester epoxy paint.
- Colour: RAL 7035
- Connection of cables: top and bottom up to 250 A - bottom connections only for upper ratings.
- The auxiliary contacts are wired to a terminal block.



## Dimensions


(1) Wall mounting brackets supplied up to 400 A
(2) Floor standing feet from 630 A (add 200 mm to the H dimensions for feet).
(3) Interfaces D10 or D20 (optional).

| Rating (A) | Recommended cable cross-section ( $\mathrm{mm}^{2}$ ) | H (mm) | L (mm) | P (mm) | M (mm) | N (mm) | Z1 (mm) | Z2 (mm) | Weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 125 | 50 | 650 | 400 | 300 | 448 | 608 | 38 | 134 | 25 |
| 160 | 70 | 650 | 400 | 300 | 448 | 608 | 38 | 134 | 25 |
| 250 | 120 | 1000 | 650 | 475 | 698 | 958 | 39.5 | 134.5 | 45 |
| 400 | 240 | 1000 | 650 | 475 | 698 | 958 | 39.5 | 134.5 | 50 |
| 630 | $2 \times 185$ | 1000 | 650 | 475 |  |  | 53 | 190 | 70 |
| 800 | $2 \times 240$ | 1200 | 800 | 660 |  |  | 66.5 | 253.5 | 135 |
| 1000 | $4 \times 150$ | 1200 | 800 | 660 |  |  | 66.5 | 253.5 | 140 |
| 1250 | $4 \times 185$ | 1600 | 1000 | 830 |  |  | 66.5 | 253.5 | 270 |
| 1600 | $4 \times 240$ | 1600 | 1000 | 830 |  |  | 67.5 | 253.5 | 375 |
| 2000 | $8 \times 150$ | 2000 | 1000 | 1000 |  |  |  |  | 400 |
| 2500 | $8 \times 185$ | 2000 | 1000 | 1000 |  |  |  |  | 400 |
| 3200 | $8 \times 240$ | 2000 | 1000 | 1000 |  |  |  |  | 400 |

ATyS range
ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
from 125 to 3200 A
Characteristics according to IEC 60947-3 and IEC 60947-6-1
125 to 630 A / B3 to B5

| Thermal current $\mathrm{l}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ |  | 125 A | 160 A | 200 A | 250 A | 315 A | 400 A | 500 A | 630 A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size |  | B3 | B3 | B3 | B4 | B4 | B4 | B5 | B5 |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{M}$ ( (power c |  | 800 | 800 | 800 | 1000 | 1000 | 1000 | 1000 | 1000 |
| Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}($ | wer circuit) | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{M})$ (operatio |  | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
| Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}(\mathrm{K})$ | eration circuit) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1 |  |  |  |  |  |  |  |  |  |
| Rated voltage | Utilisation category | A/B ${ }^{(1)}$ |
| 415 VAC | AC-31 B | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 |
| 415 VAC | AC-32 B |  |  |  | 200 | 315 | 400 | 500 | 500 |
| 415 VAC | AC-33 B |  |  |  | 200 | 200 | 200 | 400 | 400 |
| Rated operational currents $\mathrm{l}_{\mathrm{e}}(A)$ according to IEC 60947-3 |  |  |  |  |  |  |  |  |  |
| Rated voltage | Utilisation category | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | $\mathrm{A} / \mathrm{B}^{(1)}$ |
| 415 VAC | AC-20 A / AC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 415 VAC | AC-21 A/AC-21 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 415 VAC | AC-22 A/AC-22 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 415 VAC | AC-23 A / AC-23 B | 125/125 | 160/160 | 200/200 | 200/200 | 315/315 | 400/400 | 500/500 | 630/630 |
| 500 VAC | AC-20 A/AC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 500 VAC | AC-21 A/AC-21B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 500 VAC | AC-22 A/AC-22 B | 125/125 | 160/160 | 200/200 | 200/250 | 200/315 | 200/400 | 500/500 | 500/500 |
| 500 VAC | AC-23 A/AC-23 B | 80/80 | 80/80 | 80/80 | 200/200 | 200/200 | 200/200 | 400/400 | 400/400 |
| 690 VAC | AC-20 A / AC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| 690 VAC | AC-21 A/AC-21 B | 125/125 | 160/160 | 200/200 | 200/200 | 200/200 | 200/200 | 500/500 | 500/500 |
| 690 VAC | AC-22 A/AC-22 B | 125/125 | 125/125 | 125/125 | 160/160 | 160/160 | 160/160 | 400/400 | 400/400 |
| 690 VAC | AC-23 A / AC-23 B | 63/80 | 63/80 | 63/80 | 125/125 | 125/125 | 125/125 | 400/400 | 400/400 |
| $220 \mathrm{VDC}^{(2)}$ | DC-20 A / DC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| $220 \mathrm{VDC}^{(2)}$ | DC-21 A/ DC-21 B | 125/125 | 160/160 | 200/200 | 250/250 | 250/250 | 250/250 | 500/500 | 630/630 |
| $220 \mathrm{VDC}^{(2)}$ | DC-22 A/ DC-22 B | 125/125 | 160/160 | 200/200 | 250/250 | 250/250 | 250/250 | 500/500 | 630/630 |
| $220 \mathrm{VDC}^{(2)}$ | DC-23 A / DC-23 B | 125/125 | 125/125 | 125/125 | 200/200 | 200/200 | 200/200 | 500/500 | 630/630 |
| $440 \mathrm{VDC}^{(2)}$ | DC-20 A/ DC-20 B | 125/125 | 160/160 | 200/200 | 250/250 | 315/315 | 400/400 | 500/500 | 630/630 |
| $440 \mathrm{VDC}^{(2)}$ | DC-21 A / DC-21 B | 125/125 | 125/125 | 125/125 | 200/200 | 200/200 | 200/200 | 500/500 | 630/630 |
| $440 \mathrm{VDC}^{(2)}$ | DC-22 A / DC-22 B | 125/125 | 125/125 | 125/125 | 200/200 | 200/200 | 200/200 | 500/500 | 630/630 |
| $440 \mathrm{VDC}^{(2)}$ | DC-23 A / DC-23 B | 125/125 | 125/125 | 125/125 | 200/200 | 200/200 | 200/200 | 500/500 | 630/630 |

Fuse protected short-circuit withstand as per IEC 60947-3 at 690 VAC

| Prospective short-circuit current (kA rms) | $100^{(3)}$ | $100^{(3)}$ | $50^{(3)}$ | 50 | 50 | 50 | 50 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Associated fuse rating (A) | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 |
| Circuit breaker protected short-circuit withstand with any circuit breaker that ensures tripping in less than $0.3 s^{(4)}$ |  |  |  |  |  |  |  |  |
| Rated short-time withstand current $0.3 \mathrm{~s} \mathrm{I}_{\mathrm{cw}}$ (kA rms) | $12^{(3)}$ | $12^{(3)}$ | $12^{(3)}$ | 15 | 15 | 15 | 17 | 17 |
| Rated short-circuit withstand without protection |  |  |  |  |  |  |  |  |
| Rated short-time withstand current $60 \mathrm{~ms} \mathrm{I}_{\mathrm{cw}}$ (kA rms) as per IEC 60947-6-1 at 415 VAC |  |  |  | $10^{(5)}$ | $10^{(5)}$ | $10^{(5)}$ | 10 | 12.6 |
| Rated short-time withstand current $1 \mathrm{~ms}_{\mathrm{cw}}$ (kA rms) as per IEC 60947-3 at 690 VAC | $7^{(3)}$ | $7{ }^{(3)}$ | $7{ }^{(3)}$ | 8 | 8 | 8 | 10 | 10 |
| Rated peak withstand current (kA peak) as per IEC 60947-3 at 690 VAC | 20 | 20 | 20 | 30 | 30 | 30 | 45 | 45 |
| Connection |  |  |  |  |  |  |  |  |
| Maximum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | 35 | 50 | 70 | 95 | 150 | 185 | 240 | $2 \times 150$ |
| Minimum Cu busbar cross-section ( $\mathrm{mm}^{2}$ ) |  |  |  |  |  |  |  | $2 \times 30 \times 5$ |
| Maximum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | 50 | 95 | 120 | 150 | 240 | 240 | $2 \times 185$ | $2 \times 300$ |
| Maximum Cu busbar width (mm) | 25 | 25 | 25 | 32 | 32 | 32 | 50 | 50 |
| Tightening torque mini / maxi (Nm) | 9/13 | 9/13 | 9/13 | 20/26 | 20/26 | 20/26 | 20/26 | 20/26 |
| Switching time (Standard setting) |  |  |  |  |  |  |  |  |
| I-II or II - I (s) | 0.75 | 0.75 | 0.75 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 |
| 1-0 or 0-11 (s) | 0.45 | 0.45 | 0.45 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
| Duration of "electrical blackout" I-II (s) | 0.3 | 0.3 | 0.3 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |

Power supply

| min / max (VAC) | 166/332 | 166/332 | 166/332 | 166/332 | 166/332 | 166/332 | 166/332 | 166/332 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Control supply power demand |  |  |  |  |  |  |  |  |
| Power supply 230 VAC inrush / nominal (VA) - ATyS | 184/92 | 184/92 | 184/92 | 276/115 | 276/115 | 276/115 | 276/150 | 276/150 |
| Power supply 230 VAC inrush / nominal (VA) - ATyS d, t, g, p | 206/114 | 206/114 | 206/114 | 298/137 | 298/137 | 298/137 | 298/172 | 298/172 |
| Mechanical characteristics |  |  |  |  |  |  |  |  |
| Durability (number of operating cycles) | 10000 | 10000 | 10000 | 8000 | 8000 | 8000 | 5000 | 5000 |
| Weight ATyS $3 / 4 \mathrm{P}$ (kg) | 5.7 / 6.9 | 5.7 / 6.9 | $5.7 / 6.9$ | $6.6 / 7.4$ | $6.7 / 7.8$ | $6.7 / 7.8$ | 11.4/13.3 | 11.9/14.0 |
| Weight ATyS d $3 / 4 \mathrm{P}(\mathrm{kg}$ ) | $6.3 / 7.5$ | 6.3/7.5 | $6.3 / 7.5$ | $7.2 / 8.0$ | 7.3 / 8.4 | 7.3/8.4 | 12.0 / 13.9 | 12.5 / 14.6 |
| Weight ATyS r, t, g, p 3/4 P (kg) | $6.8 / 8.0$ | $6.8 / 8.0$ | $6.8 / 8.0$ | $7.7 / 8.5$ | 7.8/8.9 | 7.8/8.9 | 12.5 / 14.4 | 13.0 / 15.1 |
| (1) Category with index $A=$ frequent operation - Category with index $B=$ infrequent operation. <br> (2) 3-pole device with 2 pole in series for the "+" and 1 pole for the "--" 4 -pole device with 2 poles in series by polarity. | (3) At 415 VAC. <br> (6) Value for coordination with any circuit-breaker that ensures tripping in less than 0.3 s . |  |  | For coordination with specific circuit-breaker references, higher short-circuit current values are available. Please consult us. <br> (5) At 30 ms . |  |  |  |  |


| Thermal current $\mathrm{Ith}_{\text {th }}$ at $40^{\circ} \mathrm{C}$ | 800 A | 1000 A | 1250 A | 1600 A | 2000 A | 2500 A | 3200 A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size | B6 | B6 | B6 | B7 | B8 | B8 | B8 |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}} \mathrm{M}$ ( (power circuit) | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
| Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}(\mathrm{kV})$ (power circuit) | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Rated insulation voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{V})$ (operation circuit) | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
| Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (kV) (operation circuit) | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-6-1 |  |  |  |  |  |  |  |
| Rated voltage Utilisation category | $\mathrm{A} / \mathrm{B}^{(1)}$ | $\mathrm{A} / \mathrm{B}^{(1)}$ | A/B ${ }^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ | $\mathrm{A} / \mathrm{B}^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ |
| 415 VAC AC-31 B | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 |
| 415 VAC AC-32 B | 800 | 1000 | 1250 | 1600 | 2000 | 2000 | 2000 |
| 415 VAC AC-33 B | 800 | 800 | 800 | 1000 | 1250 | 1250 | 1250 |
| Rated operational currents $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ according to IEC 60947-3 |  |  |  |  |  |  |  |
| Rated voltage Utilisation category | $\mathbf{A} / \mathbf{B}^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ | A/B ${ }^{(1)}$ | $\mathbf{A} / \mathbf{B}^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ | A/B ${ }^{(1)}$ |
| 415 VAC AC-20 A/AC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | 2000/2000 | 2500/2500 | 3200/3200 |
| 415 VAC AC-21 A/AC-21 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | -/2000 | -/2500 | -/3200 |
| 415 VAC AC-22 A/AC-22 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | -/2000 | -/2500 | -/3200 |
| 415 VAC AC-23 A/AC-23 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 | -/1600 | -/1600 | -/1600 |
| 500 VAC AC-20 A/AC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | 2000/2000 | 2500/2500 | 3200/3200 |
| 500 VAC AC-21 A / AC-21 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | -/2000 | -/2500 | -/3200 |
| 500 VAC AC-22 A/AC-22 B | 630/630 | 800/800 | 1000/1000 | 1600/1600 |  |  |  |
| 500 VAC AC-23 A / AC-23 B | 400/400 | 630/630 | 800/800 | 1000/1000 |  |  |  |
| 690 VAC AC-20 A/AC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | 2000/2000 | 2500/2500 | 3200/3200 |
| 690 VAC AC-21 A / AC-21 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 | -/2000 | -/2500 | -/3200 |
| 690 VAC AC-22 A / AC-22 B | 630/630 | 800/800 | 1000/1000 | 1000/1000 |  |  |  |
| 690 VAC AC-23 A/AC-23 B | 400/400 | 630/630 | 800/800 | 800/800 |  |  |  |
| $220 \mathrm{VDC}^{(2)}$ DC-20 A/DC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 |  |  |  |
| $220 \mathrm{VDC}^{(2)}$ DC-21 A/DC-21 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |  |  |  |
| $220 \mathrm{VDC}^{(2)}$ DC-22 A/DC-22 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |  |  |  |
| $220 \mathrm{VDC}^{(2)}$ DC-23 A/DC-23 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |  |  |  |
| $440 \mathrm{VDC}^{(2)}$ DC-20 A/ DC-20 B | 800/800 | 1000/1000 | 1250/1250 | 1600/1600 |  |  |  |
| $440 \mathrm{VDC}^{(2)}$ DC-21 A/DC-21 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |  |  |  |
| $440 \mathrm{VDC}^{(2)}$ DC-22 A/DC-22 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |  |  |  |
| $440 \mathrm{VDC}^{(2)}$ DC-23 A/ DC-23 B | 800/800 | 1000/1000 | 1250/1250 | 1250/1250 |  |  |  |
| Fuse protected short-circuit withstand as per IEC 60947-3 at 415 VAC |  |  |  |  |  |  |  |
| Prospective short-circuit current (kA rms) | 50 | 100 | 100 | 100 |  |  |  |
| Associated fuse rating (A) | 800 | 1000 | 1250 | 2x800 |  |  |  |
| Circuit breaker protected short-circuit withstand with any circuit breaker that ensures tripping in less than $0.3 \mathrm{~s}^{(3)}$ |  |  |  |  |  |  |  |
| Rated short-time withstand current $0.3 \mathrm{~s} \mathrm{I}_{\text {cw }}$ (kA rms) | 47 | 64 | 64 | 78 | 78 | 78 | 78 |
| Rated short-circuit withstand without protection |  |  |  |  |  |  |  |
| Rated short-time withstand current $60 \mathrm{~ms} \mathrm{I}_{\mathrm{cw}}$ (kA rms) as per IEC 60947-6-1 at 415 VAC | 16 | 20 | 25 | 32 | 40 | 50 | 50 |
| Rated short-time withstand current $1 \mathrm{~ms} \mathrm{I}_{\mathrm{ow}}$ (kA rms) as per IEC 60947-3 at 415 VAC | 26 | 35 | 35 | 50 | 50 | 50 | 50 |
| Rated peak withstand current (kA peak) as per IEC 60947-3 at 415 VAC | 55 | 55 | 80 | 110 | 120 | 120 | 120 |


| Connection |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | $2 \times 185$ | $2 \times 240$ |  |  |  |  |  |
| Minimum Cu busbar cross-section ( $\mathrm{mm}^{2}$ ) | $2 \times 50 \times 5$ | $2 \times 50 \times 5$ | $2 \times 60 \times 5$ | $2 \times 80 \times 5$ | $2 \times 100 \times 10$ | $2 \times 100 \times 10$ | $2 \times 100 \times 10$ |
| Maximum Cu cable cross-section ( $\mathrm{mm}^{2}$ ) | $2 \times 300$ | $4 \times 185$ | $4 \times 185$ | $6 \times 185$ |  |  |  |
| Maximum Cu busbar width (mm) | 63 | 63 | 63 | 100 | 100 | 100 | 100 |
| Tightening torque mini / maxi (Nm) | 20/26 | 20/26 | 20/26 | 40/45 | 40/45 | 40/45 | 40/45 |
| Switching time (Standard setting) |  |  |  |  |  |  |  |
| I-0 or II-0 (s) | 2.6 | 2.6 | 2.6 | 2.6 | 2 | 2 | 2 |
| I-II or II-I (s) | 1.6 | 1.6 | 1.6 | 1.6 | 1 | 1 | 1 |
| Duration of "electrical blackout" \| - || (s) | 1.5 | 1.5 | 1.5 | 1.6 | 1 | 1 | 1 |
| Power supply |  |  |  |  |  |  |  |
| min / max (VAC) | 166/332 | 166/332 | 166/332 | 166/332 | 166/332 | 166/332 | 166/332 |
| Control supply power demand |  |  |  |  |  |  |  |
| Power supply 230 VAC inrush / nominal (VA) - ATyS | 460/184 | 460/184 | 460/184 | 460/230 | 812/322 | 812/322 | 812/322 |
| Power supply 230 VAC inrush / nominal (VA) - ATyS d, t, g, p | 482/206 | 482/206 | 482/206 | 482/252 | 834/344 | 834/344 | 834/344 |
| Mechanical characteristics |  |  |  |  |  |  |  |
| Durability (number of operating cycles) | 4000 | 4000 | 4000 | 3000 | 3000 | 3000 | 3000 |
| Weight ATyS $3 / 4 \mathrm{P}$ (kg) | 27.9/32.2 | 28.4 / 32.9 | 28.9 / 33.6 | 33.1 / 39.4 | 50.7 / 61.6 | 50.7 / 61.6 | 61.0/75.3 |
| Weight ATyS d $3 / 4 \mathrm{P}(\mathrm{kg}$ ) | 28.5/32.8 | 29.0/33.5 | 29.5/34.2 | 33.7 / 40.0 | 51.3/62.2 | 51.3/62.2 | 61.6/75.9 |
| Weight ATyS r, t, g, p 3/4 P (kg) | 29.0 / 33.3 | 29.5 / 34.0 | 30.0/34.7 | 34.2 / 40.5 | 51.8/62.7 | $51.8 / 62.7$ | $62.1 / 76.4$ |
| (1) Category with index $A=$ frequent operation - Category with index $B=$ infrequent operation. <br> (2) 3 -pole device with 2 pole in series for the "+" and 1 pole for the " - ". 4 -pole device with 2 poles in series by polarity. | For coordination with specific circuit-breaker references, higher short-circuit current values are available. Please consult us. |  |  |  |  |  |  |

4-pole device with 2 poles in series by polarity.
(3) Value for coordination with any circuit-breaker that ensures tripping in less than 0.3 s

Terminals and connections
ATyS r


1 preferred source (mains or genset)
2 alternate source (mains or genset)
1: position 0 control (contactor logic if closed)
2: position I control
3: position II control
4: position 0 priority control
5 : closure of this contact enables the position control orders
6: product availability relay
7: auxiliary contact, closed when the switch is in position II
8: auxiliary contact, closed when the switch is in position I
9: auxiliary contact, closed when the switch is in position 0

ATyS d


1 preferred source (mains or genset)
2 alternate source (mains or genset)

1: position 0 control (contactor logic if closed)
2: position I control
3: position II control
4: position 0 priority control
5: closure of this contact enables the position control orders
6: product availability relay
7: auxiliary contact, closed when the switch is in position II
8: auxiliary contact, closed when the switch is in position I
9: auxiliary contact, closed when the switch is in position 0
10: D10 remote indicator


1 preferred source (network)
alternate source (network)

1: position 0 control (contactor logic if closed)
2: position I control
3: position II control
4: position 0 priority control
5 : closure of this contact enables the position control orders
6: motorisation unit availability relay
7 : auxiliary contact, closed when the switch is in position II
8: auxiliary contact, closed when the switch is in position I
9: auxiliary contact, closed when the switch is in position 0
10: D10 remote indicator
11 : electronic unit availability relay
12: automatic operation inhibited
13: manual retransfer confirmation
14 : preferred source selection
15: operation with or without priority
16: voltage tap inputs
17 : power supply inputs


1 preferred source (Mains)
2 alternate source (Mains or genset)
1: position 0 control (contactor logic if closed)
2: position I control
3: position || control
4: position 0 priority control
5: closure of this contact enables the position control orders
6: motorisation unit availability relay
7: auxiliary contact, closed when the switch is in position II
8: auxiliary contact, closed when the switch is in position I
9: auxiliary contact, closed when the switch is in position 0
10: D10 remote indicator
11: electronic unit availability relay
12: automatic operation inhibited
13: manual retransfer confirmation
14: 2AT time delay bypass
15: priority for test on load
16: remote test off load
17: remote test on load
19-20: genset starting and stopping order

| Control | $71 / 72(19)$ | $71 / 74(20)$ |
| :--- | :--- | :--- |
| Generator starting | Contact closed | Contact open |
| Generator stopping | Contact open | Contact closed |

21 : voltage tap inputs
22 : power supply inputs
ATyS p


1 preferred source (Mains or genset)
2 alternate source (Mains or genset)
1: position 0 control (contactor logic if closed)
2: position I control
3: position II control
4: position 0 priority control
5: closure of this contact enables the position control orders
6: motorisation unit availability relay
7: auxiliary contact, closed when the switch is in position II
8: auxiliary contact, closed when the switch is in position I
9: auxiliary contact, closed when the switch is in position 0
10: remote display D20
11: electronic unit availability relay
12-17: programmable inputs
18: auxiliary power supply for the use of optional modules
19-20: genset starting and stopping order

| Control | $71 / 72(19)$ | $71 / 74(20)$ |
| :--- | :--- | :--- |
| Generator starting | Contact closed | Contact open |
| Generator <br> stopping | Contact open | Contact closed |

## ATyS range

ATyS r, ATyS d, ATyS t, ATyS g, ATyS p
from 125 to 3200 A

Dimensions
ATyS 125 to 630 A / B3 to B5


ATyS 800 to 1600 A / B6 to B7

4. Terminal screens
5. Inter phase barrier
6. Handle

| Rating (A) / | Overall dimensions | Terminal shrouds | Switch body |  |  |  | Switch mounting |  | Connection |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame size | B | AC | F 3p. | F 4p. | J 3p. | J 4 p . | M 3p. | M 4p. | T | U | v | X | Y | Z1 | AA |
| 800 / B6 | 370 | 461 | 504 | 584 | 306.5 | 386.5 | 255 | 335 | 80 | 50 | 60.5 | 47.5 | 7 | 66.5 | 321 |
| 1000 / B6 | 370 | 461 | 504 | 584 | 306.5 | 386.5 | 255 | 335 | 80 | 50 | 60.5 | 47.5 | 7 | 66.5 | 321 |
| 1250 / B6 | 370 | 461 | 504 | 584 | 306.5 | 386.5 | 255 | 335 | 80 | 60 | 65 | 47.5 | 7 | 66.5 | 330 |
| 1600 / B7 | 380 | 531 | 596 | 716 | 398.5 | 518.5 | 347 | 467 | 120 | 90 | 44 | 53 | 8 | 67.5 | 288 |

ATyS 2000 to 3200 A / B8


| Rating (A) | Overall dimensions B | Terminal shrouds AC | Switch body |  |  |  | Switch mounting |  | Connection |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | F 3p. | F 4p. | J 3p. | J 4p. | M 3p. | M 4p. | T | U | V | X | Y | Z1 | AA |
| 2000 ... 3200 | 380 | 531 | 347 | 467 | 399 | 519 | 347 | 467 | 120 | 90 | 44 | 53 | 8 | 67.5 | 288 |

Cut of dimensions

ATyS 125 to 630 A / B3 to B5
ATyS r
ATyS d, t, g, p



ATyS 800 to 1600 A / B6 to B7

ATyS r


ATyS d, t, g, p


Connection terminals
ATyS 800 to 1000 A / B6



Remotely operated Transfer Switching Equipment from 4000 to 6300 A


## Function

The ATyS d H is a three-phase transfer switch, 3 and 4 poles, designed for low voltage high power applications that require a high performance and fast reliable switching. The open transition transfer is performed on-load in line with IEC 60947-6-1 and GB 14048-11 standards (Class PC) with minimal power supply interruption to the load during transfer.
The ATyS dH is remote transfer switching equipment (RTSE) with an integrated dual power supply (DPS) that accepts remote orders through volt-free contacts.

## Advantages

Ready for installation in the enclosure of your choice
The ATyS d H has been designed to facilitate installation as it is available as a fixed or completely withdrawable type of transfer switch. It is composed of two switches that are mounted one above the other with easily accessible power connections located at the rear. Furthermore the ATyS d H does not need any external bridging bars as the load side is connected within the product. This enables to save time during installation.

## High performance switching

The ATyS d H offers high withstand short circuit current ratings of 143 kA Icm (making) and 65 kA for 0.1 sec Icw (withstand). Further to its high short circuit withstand, the ATyS dH performance in terms of load switching capacity is AC33iB ( $6 x \ln \cos \varnothing 0.5$ ) without derating.

Safe on-load transfer: I-0-II
The ATyS d H includes two mechanically interlocked switches to ensure fast switching whilst providing a neutral (Off - 0) position. This ensures that the main and alternative power supplies do not overlap. The 0 position can also be used for safe maintenance of the installation, providing isolation between both sources and the load.

## The solution for

$>$ Data centre
$>$ Telecommunications
$>$ Industries


## Strong points

$>$ Ready for installation in the enclosure of your choice
> High performance switching
> Safe on-load transfer: I-0-II

## Conformity to standards

$>$ IEC 60947-6-1
> GB 14048-11


## Approvals and certifications



## Enclosed solution

> Please contact your SOCOMEC office

## External automatic controller

$>$ The ATyS d H is an RTSE which is compatible with most building management systems. It may also be supplied as an ATSE including an ATyS C20 / C30 / C40 controller with a door mounted external display.

Characteristics according to IEC 60947-6-1

| 4000 to 6300 A |  |  |  |
| :---: | :---: | :---: | :---: |
| Thermal current $\mathrm{I}_{\mathrm{th}}$ at $40^{\circ} \mathrm{C}$ | 4000 A | 5000 A | 6300 A |
| Rated operating voltage $U_{e}(\mathrm{M})$ |  | 660 |  |
| Rated insulation voltage $\left.\mathrm{U}_{\mathrm{i}} \mathrm{M}\right)$ |  | 660 |  |
| Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (kV) |  | 12 |  |
| Rated short-circuit withstand at 660 VAC |  |  |  |
| Rated short-time withstand current 0.1 s l cw ( kA rms ) |  | 65 |  |
| Rated peak withstand current (kA peak) |  | 143 |  |
| Rated operational current $I_{e}(A)$, at 660 VAC - AC32B | 4000 | 5000 | 6300 |
| Rated operational current $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$, at $660 \mathrm{VAC}-\mathrm{AC33iB}(6 x \mathrm{ln} \cos \varnothing 0.5)$ | 4000 | 5000 | 6300 |
| Connection |  |  |  |
| Rear connection with busbar | - | - | - |
| Switching time |  |  |  |
| 1 to 0 (ms) |  | $\leq 150$ |  |
| 0 to I and 0 to II (ms) |  | $\leq 90$ |  |
| 1 to 0 (ms) |  | $\leq 200$ |  |
| I-0-III / II-0-1 (s) |  | 1.2 |  |
| Operating frequency |  | erations pe |  |
| Power supply |  |  |  |
| VAC power supply (powered directly on terminals S1 and S2) |  | 230 |  |
| Main coil operating current (peak during transfers) |  | $65 \mathrm{~A}^{(1)}$ |  |
| Mechanical characteristics |  |  |  |
| Durability (number of operating cycles) |  | 3000 |  |
| Weight (kg) - Fixed 3/4P model | 180 / 220 | $200 / 250$ | $200 / 250$ |
| Weight (kg) - Plug-in 3/4P model | $220 / 275$ | 245/400 | 245/400 |

(1) instantaneous value. For a complete operation, power should be available during 0.5 s

Dimensions for fixed models


|  | Overall dimensions |  |
| :--- | :---: | :---: |
|  | $\mathbf{A}$ | $\mathbf{A}$ |
| Rating (A) | $\mathbf{3 p}$. | $\mathbf{4 p}$. |
| 4000 A | 866 | 1096 |
| 5000 A | 866 | 1096 |
| 6300 A | 866 | 1096 |


| Switch body |  |  |
| :---: | :---: | :---: |
| F | $\mathbf{F}$ |  |
| 3p. | $\mathbf{4 p .}$ | $\mathbf{H}$ |
| 834 | 1064 | 527 |
| 834 | 1064 | 541 |
| 834 | 1064 | 541 |


| Connection |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{T}$ | $\mathbf{U}$ |
| 69 | 17 | 24 | 38 |
| 79 | 21 | 30 | 52 |
| 79 | 21 | 30 | 52 |

## Reference

For more information regarding references, please consult us.

## ATyS C20/C30/C40

## Control relays



## Function

ATyS C20/C30/C40 are modular control relays. They ensure the automatic control of remotely controlled transfer switches, ATyS, ATyS S and ATys M, as well as contactors, circuit breakers or other motorised switches

## General characteristics

ATyS C20/C30

- Inputs for auxiliary contact position information.
- 3U measurement on network 1 and 1 U on network 2.
- 2 programmable inputs for the following functions: test on/off load, manual retransfer, start/stop transfer cycle.
- Up to 2 programmable outputs for the following functions: source availability information and circuit breaker control.
- 1 relay output for genset control.
- D10 or D20 remote interfaces are available for transferring data or control to the front cabinet panel (only on C30 version).


## Advantages

## Auxiliary power supply

Two versions of the ATyS C30 are available. One version with an AC supply via the measurement inputs and another with a DC auxiliary supply.

ATyS C40

- Dual genset controller with a redundant genset application cycle (basic cycle).
- 1 U and F measurement on each source genset 1 \& genset 2.
- 3 programmable inputs for the following functions: test on/off load, manual retransfer, start/stop transfer cycle.
- 1 programmable output for the following functions : source availability information and circuit breaker control.
- 2 genset control contacts (Gen1 \& Gen2).

Modular device
The ATyS C20, C30 and C40 are modular products ( 6 modules, 105 mm wide) which can be DIN-rail mounted.

## Extended compatibility of use

The product is used with Socomec transfer switches, or those using identical technology. It is also compatible with contactor and circuit breaker technologies.

## The solution for

> Power and control separation
$>$ Genset/Genset applications


## Strong points

> Auxiliary power supply
> Modular device
$>$ Extended compatibility of use

## Conformity to standards

IEC 61010-1
IEC 61000-4-x
IEC 60068-2-x

Configurations
ATyS C20/C30:
Transformer/transformer and transformer/genset applications


ATyS C40:
Genset/genset applications


1 and $1^{\prime} .1 \mathrm{U}$ and F measurement for each genset
2. Control and position information feedback

3 and 3 . Genset "start/stop" control
4. External "start/stop" command for basic cycle
5. DC power supply

## Electrical characteristics

| Supplied from measurement circuit | $110 \ldots 400 \mathrm{VAC}$ |
| :--- | :---: |
| DC power supply | $9 \ldots 30 \mathrm{VDC}$ |
| Measurement range | $110 \ldots 400 \mathrm{VAC} / \pm 10 \%$ |
| Frequency | $50 / 60 \mathrm{~Hz}$ |
| Accuracy | $\pm 1 \%$ |

Terminals



1. Genset G1 start / stop control 2. Position 1: power control
2. Position 2: power control
3. O1: programmable output 5. Genset G2 start / stop control 6. AC1: auxiliary contact position 1 7. I3: programmable input
4. AC2: auxiliary contact position 2 9. 11: programmable input 10. I2: programmable input 11. Genset G1: 1U measurement 12. Genset G2: $1 \cup$ measurement 13. DC power supply 9-30 VDC

## References

|  | ATyS C20 | ATyS C30 | ATyS C40 <br> Reference |
| :--- | :---: | :---: | :---: |
| Type | Reference <br> Reference |  |  |
| Supplied from measurement circuit | 1599 3020 | 15993030 |  |
| DC power supply |  | 15993031 | $\mathbf{1 5 9 9 3 0 4 0}$ |

## The UL product range

## A range of manual or remotely operated transfer switches up to 1200 A

| MTSE | RTSE |
| :---: | :---: |
| (Manual) | (Remotely operated) |



## Typical applications

The ATyS UL 1008 range provides safe transfer for mains/genset and genset/genset applications.


## Function

ATYS and SIRCOVER UL 1008 transfer switching equipment ensure:

- Maintenance free transfer switch equipment with a robust and reliable design.
- Power control and safety between a normal and an alternate source.
- Integrated and robust switch disconnection.
- A stable OFF position with built in padlocking to facilitate safe downstream maintenance.
- Positive break indication with clear visible position indication I-0-II.
- An inherent failsafe mechanical interlock prevents asynchronous paralleling of the two sources.
- Stable positions (I-0-II) non affected by typical vibration and shock.
- Constant pressure on the contacts non affected by network voltage perturbation.
- Quick, easy and extremely safe manual operation.

Further to the above the ATyS also includes:

- A simple and secure motorization remote controls interface.
- Integrated switch position auxiliary contacts.
- An active "product availability" status feedback.
- Compatibility with virtually any make of ATS, AMF, Genset controller provided with volt-free contacts.

Power supply continuity for most electrically controlled total system optional standby power applications.

## SOCOMEC UL products

The ATYS UL is a full load break transfer switch where the main switching components are proven technology devices (SIRCOVER - Manual Transfer Switches) also fulfiling requirements in UL 98 and IEC 60947-3 standards. The transfer is done in open transition with a minimum supply interruption during transfer ensuring full compliance with UL 1008 and IEC 60947-6-1 international TSE standards.

As a stand-alone product, the ATyS is a non-automatic power transfer switch (an electrically operated transfer switch that is not self-acting), generally used in applications where the load is non-emergency, does not require automatic transfer and where operating persons can be made available to initiate the transfer.
The electrical control of the ATyS UL may be direct through pushbuttons and dry contacts fitted onto the enclosure door or through a dedicated ATS controller that may be fitted to the door or remotely extended outside the enclosure.

Your preferred brand of ATS controller, genset / AMF controller or power / building management system, may easily be paired with the ATyS to provide a complete automatic transfer switch to suit your needs.

Thanks to an integrated factory installed stable OFF position, the operating mechanism of the ATyS allows the user to intentionally and safely disconnect both the normal and alternate supplies regardless of supply availability.

## UL Applications

ATYS UL 1008 transfer switches are rated from 100 to 400A and designed for use in total system optional standby power applications for the safe transfer of a load supply between a normal and an alternate source.

Optional standby systems are those systems installed to provide an alternate source of power for structures for which a power outage could cause discomfort or interruption or damage to products or processes.

## SIRCOVER UL 1008 <br> Manual Transfer Switching Equipment 100 to 1200 A

Transfer switches


## Function

SIRCOVER UL 1008/98 are heavy duty manual transfer switches. They ensure switching transfer of sources or transfer of two low voltage circuits on load as well as their safe disconnection.
These switches are extremely durable and are tested and approved for use in the most demanding applications, such as resitive load or total system applications.

## Advantages

## Stable positions

SIRCOVERs have three stable positions which are not affected by voltage drops or vibrations, thus protecting your load against network interference.

## Compact design

The SIRCOVER are based on a back-to-back switching technology, providing a compact solution.

## On load switching

The SIRCOVER UL enables secure and reliable switching, without the need for pre-breaking upstream.

## Reliability

The SIRCOVER has double breaking per pole acheived through its sliding bar contacts system.
The quick opening and rapid closure provides simultaneous disconnecting or making of all power contacts.

## The solution for

> Manufacturing industry
$>$ Power distribution
$>$ Domestic


## Strong points

> Stable positions
> Compact design
$>$ On load switching
$>$ Reliability

## Conformity to standards

> UL 1008,
Guide WPYV, file 317092
> UL 98,
Guide WHTY,
file 201138
> CSA 22.2\#4,
Class 4651-02
UL 98 and CSA from 600-1200 A with 100-400 A on request with a specific reference.

Typical application

The SIRCOVER UL 1008 range provides safe transfer and disconnection at all levels within your LV installation.

## Normal power supply to genset transfer

The source transfer will be operated safely even under on-load or over-load conditions

They can be used for changing motor phase for rotation control or equipmement grounding as well.


SOCOMEC solution up to 1200 A


UL 1008 Manual Transfer Switch
From 100 to 400 A for resistive and total systems applications
UL 98 versions on request

UL 1008 and UL 98 Manual Transfer Switch
From 600 to 1200 A for resistive and total systems applications
Has UL 98/CSA 22.2\#4 certification

## IEC solution up to 3200 A

The SIRCOVER UL 1008 is part of a large range that includes an IEC range of standalone or enclosed manual transfer switches and manual by-pass switches with overlapping options. Contact us for further information on our complete range


SIRCOVER UL 1008
Manual Transfer Switching Equipment
100 to 1200 A

References
UL 1008

| Rating (A) | No. of <br> poles | Switch body | Direct handle | External handle | Shaft for external <br> handle | Bridging bars | Auxiliary <br> contacts | Terminal screens |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^7]Accessories
Direct handle

| Rating (A) | Colour | Handle type | Reference |
| :--- | :---: | :---: | :---: |
| $100 \ldots 400$ | Black | 1 lever | 41994012 |
| $600 \ldots 1200$ | Black | 2 lever | 27997042 |

## External handle

| Rating (A) | Handle type | Colour | Nema type | Lockable in 3 positions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $100 . . .200$ | S2 | Black | 4, 4X | no | 142D 2113 |
| $100 . . .200$ | S2 | Red/Yellow | 4, 4X | no | 142 E 2113 |
| $100 . . .200$ | S2 | Black | 1, 3R, 12 | no | 142F 2113 |
| $100 . . .200$ | S2 | Red/Yellow | 1, 3R, 12 | no | 142 G 2113 |
| $100 . . .200$ | S2 | Black | 4, 4X | yes | 142D 2813 |
| $100 . . .200$ | S2 | Red/Yellow | 4, 4X | yes | 142 E 2813 |
| $100 . . .200$ | S2 | Black | 1, 3R, 12 | yes | 142F 2813 |
| $100 . . .200$ | S2 | Red/Yellow | 1, 3R, 12 | yes | 142G 2813 |
| 260 ... 600 | S3 | Black | 4, 4X | no | 143D 3113 |
| 260 ... 600 | S3 | Red/Yellow | 4, 4X | no | 143E 3113 |
| 260 ... 600 | S3 | Black | 1, 3R, 12 | no | 143F 3113 |
| 260 ... 600 | S3 | Red/Yellow | 1, 3R, 12 | no | 143G 3113 |
| 260 ... 600 | S3 | Black | 4, 4X | yes | 143D 3813 |
| 260 ... 600 | S3 | Red/Yellow | 4, 4X | yes | 143E 3813 |
| 260 ... 600 | S3 | Black | 1, 3R, 12 | yes | 143F 3813 |
| 260 ... 600 | S3 | Red/Yellow | 1, 3R, 12 | yes | 143G 3813 |
| $800 . . .1200$ | S4 | Black | 4, 4X | no | 144D 3113 |
| $800 . . .1200$ | S4 | Black | 1, 3R, 12 | no | 144 E 3113 |
| $800 . . .1200$ | S4 | Black | 1, 3R, 12 | no | 144 E 3113 |
| $800 . . .1200$ | S4 | Red/Yellow | 1, 3R, 12 | no | 144G 3113 |
| 800 ... 1200 | S4 | Black | 4, 4X | yes | 144D 3813 |
| $800 . . .1200$ | S4 | Red/Yellow | 4, 4X | yes | 144 E 3813 |
| $800 . . .1200$ | S4 | Black | 1, 3R, 12 | yes | 144F 3813 |
| 800 ... 1200 | S4 | Red/Yellow | 1, 3R, 12 | yes | 144 G 3813 |
| $800 . . .1200$ | S5 | Black | 1,3R, $12^{(1)}$ | no | 14538113 |
| $800 . .1200$ | S5 | Red/Yellow | 1, 3R, $12^{(1)}$ | no | 14548113 |
| 800 ... 1200 | V1 | Black | $1,3 \mathrm{R}, 12^{(1)}$ | no | 41997149 |

(1) For 4, $4 \times$ please consult us.

## Use

The handle interlocking function prevents the user from opening the door of the enclosure when the switch is in the "ON" position.
Opening the door when the switch is in the "ON" position is possible by defeating the interlocking function (Not S 5 and V handles) with the use of a tool (authorized persons only).
The interlocking function is restored when the door is re-closed.


Shaft for external handle

| Rating (A) | Handle <br> type | Length <br> (in) | Length <br> $(\mathbf{m m})$ | Dimension <br> $\mathbf{X ( i n )}$ | Dimension <br> $\mathbf{X ( m m )}$ | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $100 \ldots 200$ | S2 type | 7.9 | 200 | $10 \ldots 14.3$ | $254 \ldots 362$ | 14001020 |
| $100 \ldots 200$ | S2 type | 12.6 | 320 | $10 \ldots 19$ | $254 \ldots 482$ | 14001032 |
| $100 \ldots 200$ | S2 type | 15.7 | 400 | $10 \ldots 22.1$ | $254 \ldots 562$ | 14001040 |
| $260 \ldots 400$ | S3 type | 7.9 | 200 | $12 \ldots 18.4$ | $305 \ldots 467$ | 14011520 |
| $260 \ldots 400$ | S3 type | 12.6 | 320 | $12 \ldots 23.1$ | $305 \ldots 587$ | 14011532 |
| $260 \ldots 400$ | S3 type | 15.7 | 400 | $12 \ldots 26.3$ | $305 \ldots 667$ | 14011540 |
| $260 \ldots 400$ | S3 type | 7.9 | 200 | $20 \ldots 23.4$ | $508 \ldots 594$ | 14011520 |
| $260 \ldots 400$ | S3 type | 12.6 | 320 | $20 \ldots 28.1$ | $508 \ldots 714$ | 14011532 |
| $260 \ldots 400$ | S3 type | 15.7 | 400 | $20 \ldots 31.3$ | $508 \ldots 794$ | 14011540 |
| $800 \ldots 1200$ | S4 type | 7.9 | 200 | $20 \ldots 23.4$ | $508 \ldots 594$ | 14011520 |
| $800 \ldots 1200$ | S4 type | 12.6 | 320 | $20 \ldots 28.1$ | $508 \ldots 714$ | 14011532 |
| $800 \ldots 1200$ | S4 type | 15.7 | 400 | $20 \ldots 31.3$ | $508 \ldots 794$ | 14011540 |
| $800 \ldots 1200$ | $\mathrm{~V} 1 /$ S5 type | 12.6 | 320 | $20 \ldots 28.1$ | $508 \ldots 714$ | 41993018 |
| $800 \ldots 1200$ | V 1 / S5 type | 15.7 | 400 | $20 \ldots 31.3$ | $508 \ldots 794$ | 41993019 |



## SIRCOVER UL 1008

Manual Transfer Switching Equipment 100 to 1200 A

## Bridging bars

Use
Creation of a common point, above or below the switch, between positions I and II.

| Rating (A) | No. bridging bar | Reference |
| :--- | :---: | :---: |
| $100 \ldots 200$ | 2 | $4159 \mathbf{2 0 2 1}$ |
| $100 \ldots 200$ | 3 | $4159 \mathbf{3 0 2 1}$ |
| $100 \ldots 200$ | 4 | 41594021 |
| $260 \ldots 400$ | 2 | $4159 \mathbf{2 0 4 1}$ |
| $260 \ldots 400$ | 3 | 41593041 |
| $260 \ldots 400$ | 4 | 41594041 |
| 600 | 3 | 41593063 |
| 600 | 4 | $4159 \mathbf{4 0 6 3}$ |
| $800 \ldots 1200$ | 3 | $4159 \mathbf{3 0 8 0}$ |
| $800 \ldots 1200$ | 4 | $4159 \mathbf{4 0 8 0}$ |



## Terminal protection screen

## Use

Top or bottom protection against direct contact with terminals or connecting parts.

| Rating (A) | No. of poles | Reference |
| :---: | :---: | :---: |
| $100 \ldots 200$ | $2 P / 3 P$ | $4158 \mathbf{3 0 2 1}$ |
| $100 \ldots 200$ | $4 P$ | 41584021 |
| $260 \ldots 400$ | $2 P / 3 P$ | $4158 \mathbf{3 0 4 1}$ |
| $260 \ldots 400$ | $4 P$ | 41584041 |
| 600 | $6 P$ | 16093063 |
| 600 | $4 P$ | 16094063 |
| $800 \ldots 1200$ | $3 P$ | $1609 \mathbf{3 0 8 0}$ |
| $800 \ldots 1200$ | $4 P$ | 16094080 |



Auxiliary contacts

## Use

Pre-break and signalisation of positions .
For low level ACs and other ACs contact us.

## Electrical characteristics

A300.

## NO/NC auxiliary contact

| Rating (A) | Contact (s) | Reference |
| :---: | :---: | :---: |
| $100 \ldots 400$ | NO/NC on position 1 and 2 | $4159 \mathbf{0 0 2 1}$ |
| $100 \ldots 400$ | Low level NO/NC <br> on position 1 and 2 | $4159 \mathbf{0 0 2 2}$ |
| $600 \ldots 1200$ | NO/NC on position 1 and 2 | as standard |



## Terminal lugs

## Use

Connection of bare copper cables onto the terminals (without lugs).

| Rating (A) | Wires range | No wires <br> per lug | Lugs <br> per kit | Wires | Reference |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $100 \ldots 200$ | $6-300 \mathrm{MCM}$ | 1 | 2 | $\mathrm{Cu} / \mathrm{Al}$ | $3954 \mathbf{2 0 2 0}$ |
| $100 \ldots 200$ | $6-300 \mathrm{MCM}$ | 1 | 3 | $\mathrm{Cu} / \mathrm{Al}$ | $3954 \mathbf{3 0 2 0}$ |
| $100 \ldots 200$ | $6-300 \mathrm{MCM}$ | 1 | 4 | $\mathrm{Cu} / \mathrm{Al}$ | $3954 \mathbf{4 0 2 0}$ |
| $260 \ldots 400$ | $4-600 \mathrm{MCM}$ | 1 | 2 | $\mathrm{Cu} / \mathrm{Al}$ | $3954 \mathbf{2 0 4 0}$ |
| $260 \ldots 400$ | $4-600 \mathrm{MCM}$ | 1 | 3 | $\mathrm{Cu} / \mathrm{Al}$ | $3954 \mathbf{3 0 4 0}$ |
| $260 \ldots 400$ | $4-600 \mathrm{MCM}$ | 1 | 4 | $\mathrm{Cu} / \mathrm{Al}$ | 39544040 |
| 600 | $2 \times(\# 2-600 \mathrm{MCM})$ | 2 | 3 | $\mathrm{Cu} / \mathrm{Al}$ | $3954 \mathbf{3 0 6 0}$ |
| 600 | $2 \times$ (\#2-600MCM) | 2 | 4 | $\mathrm{Cu} / \mathrm{Al}$ | $3954 \mathbf{4 0 6 0}$ |
| $800 \ldots 1200$ | $2 \times 2 \times(\# 2-600 \mathrm{MCM})$ | 2 | 6 | $\mathrm{Cu} / \mathrm{Al}$ | $3954 \mathbf{3 1 2 0}$ |
| $800 \ldots 1200$ | $2 \times 2 \times(\# 2-600 \mathrm{MCM})$ | 2 | 8 | $\mathrm{Cu} / \mathrm{Al}$ | $3954 \mathbf{4 1 2 0}$ |

Characteristics
Characteristics according to UL 1008

|  | 100 to 1200 A |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General use rating (A) | 100 A | 200 A | 260 A | 400 A | 600 A | 800 A | 1200 A |
| Operation voltage | 600 | 600 | 600 | 600 | 600 | 600 | 600 |
| Short circuit rating with circuit breaker (kA/ms) | 10/25 | 10/25 | 14/50 | $14 / 50$ | $35 / 50$ | $35 / 50$ | 35/50 |
| Short circuit rating at 600 VAC (kA) | $100{ }^{(1)}$ | $100{ }^{(1)}$ | $65{ }^{(1)}$ | $65{ }^{(1)}$ | 100 | 100 | 100 |
| Type of fuse | $J^{(1)}$ | $J^{(1)}$ | $J^{(1)}$ | $J^{(1)}$ | L | L | L |
| Max. fuse rating (A) | $200{ }^{(1)}$ | $400{ }^{(1)}$ | $600{ }^{(1)}$ | $600{ }^{(1)}$ | 800 | 1000 | 1600 |
| Operational power / current max Operational 1 ph |  |  |  |  |  |  |  |
| 240 VAC Total system (A) | 100 | 100 | 260 | 400 | - | - | - |
| 240 VAC Resistive load (A) | 100 | 200 | 260 | 400 | - | - | - |
| Operational power / current max Operational 3 ph |  |  |  |  |  |  |  |
| 240 VAC Total System (A) | 100 | 200 | 260 | 400 | 400 | 700 | 700 |
| 240 VAC Resistive load (A) | 100 | 200 | 260 | 400 | 600 | 800 | 1200 |
| 480 VAC Total System (A) | 100 | 100 | 260 | 400 | 350 | 600 | 600 |
| 480 VAC Resistive load (A) | 100 | 200 | 260 | 400 | 600 | 800 | 1200 |
| 600 VAC Total System (A) | 100 | 100 | 200 | 200 |  |  |  |
| 600 VAC Resistive load (A) | 100 | 200 | 260 | 400 | 600 | 800 | 1200 |
| Mechanical endurance |  |  |  |  |  |  |  |
| Endurance (number of operating cycles) | 6050 | 6050 | 6050 | 6050 | 6050 | 3550 | 3550 |
| Connection terminals |  |  |  |  |  |  |  |
| Min. connection section / AWG | \#6 | \#6 | \#4 / 2 x \#6 | \#4 / 2 x \#6 | 2 x \#2 | 4x \#2 | 4x \#2 |
| Max. connection section / AWG | 300MCM | 300 MCM | $\begin{aligned} & \text { 600MCM / } \\ & 2 \times 350 \mathrm{MCM} \end{aligned}$ | $\begin{aligned} & \text { 600MCM / } \\ & 2 \times 350 \mathrm{MCM} \end{aligned}$ | 2 x 600 MCM | 4x 600MCM | 4x 600MCM |

(1) Note: Short circuit data given above with fuses is for general info only.

These tests are currently pending UL 1008 certification.
Characteristics according to UL 98/CSA 22.2\#4

|  | 100 to 1200 A |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General use rating at 600VAC and 250VDC (A) | Specific reference on request |  |  |  | 600 A | 800 A | 1200 A |
| Short circuit rating at 600 VAC (kA) | - | - | - | - | 200 | 100 | 100 |
| Type of fuse | - | - | - | - | J | L | L |
| Max. fuse rating (A) | - | - | - | - | 600 | 800 | 1200 |
| Max. motor, hp / FLA 3 ph motor max. |  |  |  |  |  |  |  |
| 220-240 VAC | - | - | - | - | 200/480 | - | - |
| 440-480 VAC | - | - | - | - | 400/477 | - | - |
| 600 VAC | - | - | - | - | 500/472 | - | - |
| Mechanical characteristics |  |  |  |  |  |  |  |
| Endurance (number of operating cycles) | - | - | - | - | 6000 | 3500 | 3500 |
| Operating torque (lbs.in/Nm) | - | - | - | - | 327.5/37 | 442.5/50 | 442.5/50 |
| Auxiliary contacts |  |  |  |  |  |  |  |
| Electrical characteristics | A300 |

## Mounting orientation

SIRCOVER - 100 to 400 A


SIRCOVER - 600 to 1200 A


## SIRCOVER UL 1008

Manual Transfer Switching Equipment 100 to 1200 A

Dimensions (in/mm)
100 to 200 A


400 A


Dimensions (in/mm) (continued)
600 A


800 to 1200 A

svr-ul_004_b_x_cat

## SIRCOVER UL 1008

Manual Transfer Switching Equipment 100 to 1200 A

Terminal lugs (in/mm)
SIRCOVER 100 to 200 A


SIRCOVER 260 to 400 A

sirco_115_b_1_us_cat


300 kcmil


SIRCOVER 600 to 1200 A

sirco_116_b_1_us_cat

$2 \times 600 \mathrm{kcmil}$

External handles dimensions (in/mm)
SIRCOVER 100 and 200 A
Handle type

External handles dimensions (in/mm)
SIRCOVER 260 and 600 A


SIRCOVER 800 to 1200 A

| Handle type |
| :--- |
| S4 type |
| Dront operation |
| Direction of operation |

SIRCOVER 800 to 1200 A
Handle type
S5 type
with V Escutcheon
Direction of operation


Function
ATyS non-automatic transfer switches are designed for use in total system optional standby applications for the safe transfer between a normal and an alternate power source.

The changeover is done in open transition and with minimum supply interruption during transfer ensuring full compliance with UL 1008 and IEC 60947-6-1. The ATyS is a full load break disconnect where the main components are based on proven technology also fulfilling requirements in UL 98 and IEC 60947-3 standards.

## Advantages

## Robust and Reliable design

ATyS is a remotely operated transfer switch tested in full compliance with UL 1008. The design integrates a failsafe mechanical interlock to ensure that the main source is never inadvertently connected to the alternate. The stable position design ensures that the switch is unaffected by vibration or network voltage perturbation. The ATyS also includes a removable handle for emergency manual operation. This is extremely safe and easy to use.

## Maintenance free

The self-cleaning contacts of the ATyS allow the power section to be maintenance free. For safe downstream maintenance the ATyS includes a facility for isolation and padlocking in the zero position.
In the unlikely event of a motorization failure, the ATyS is designed in a way that the motorization can be replaced easily and very quickly. Furthermore, the ATyS remains manually operational with or without the motorization in place.

Compatible with virtually any ATS controls
The ATyS is directly compatible with virtually any transfer switching control solution that provides volt free contacts. This allows the ATyS to be combined with most ATS controls available on the market and then used in automatic transfer switch applications.

Typical applications
The ATyS UL 1008 range provides safe transfer for mains/mains, mains/genset and genset/genset applications.


## Part of a globally recognized range

The ATyS UL 1008 is part of a large family of products including a complete range of remotely operated and fully automatic transfer switches that comply to IEC and GB standards.

The ATyS range is a world renowned product family trusted by some of the largest manufacturers in the genset industry.

The key to success has been through reliable power availability provided by products that are safe and easy to use.


Please don't hesitate to contact SOCOMEC for any questions concerning the IEC ATyS range of products above rated from 125 to 3200 A.

## ATyS UL 1008

Motorized Transfer Switching Equipment from 100 to 400 A

References

| Rating (A) | No. of poles | ATyS | Bridging bars | Terminal screens | Auxiliary contact | Lug kits |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 A | 2 P | 97232010 | $\begin{gathered} 2 P \\ 41592021 \\ 3 P \\ 41593021 \\ 4 P \\ 41594021 \end{gathered}$ | $\begin{gathered} 2 / 3 \mathrm{P} \\ 41583021 \\ 4 \mathrm{P} \\ 41584021 \end{gathered}$ | $\begin{gathered} \mathrm{NO} / \mathrm{NC} \\ 41590021 \end{gathered}$ | $\begin{gathered} 2 \mathrm{P} \\ 3954 \mathbf{2 0 2 0 ^ { ( 1 ) }} \\ 3 \mathrm{P} \\ 3954 \mathbf{3 0 2 0 ^ { ( 1 ) }} \\ 4 \mathrm{P} \\ 3954 \mathbf{4 0 2 0}^{(1)} \end{gathered}$ |
|  | $3 P$ | 97233010 |  |  |  |  |
|  | 4 P | 97234010 |  |  |  |  |
| 200 A | 2 P | 97232020 |  |  |  |  |
|  | 3 P | 97233020 |  |  |  |  |
|  | 4 P | 97234020 |  |  |  |  |
| 260 A | 2 P | 97232026 | $\begin{gathered} 2 P \\ 41592041 \\ 3 P \\ 41593041 \\ 4 P \\ 41594041 \end{gathered}$ | $\begin{gathered} 2 / 3 P \\ 41583021 \\ 4 P \\ 41584021 \end{gathered}$ | $\begin{aligned} & \text { Low level } \\ & 41590022 \end{aligned}$ |  |
|  | 3 P | 97233026 |  |  |  | $\begin{gathered} 2 \mathrm{P} \\ 3954 \mathbf{2 0 4 0} \end{gathered}$ |
|  | 4 P | 97234026 |  |  |  | 3 P |
| 400 A | 2 P | 97232040 |  |  |  | $39543040{ }^{(2)}$ |
|  | 3 P | 97233040 |  |  |  | $\begin{gathered} 4 \mathrm{P} \\ 3954 \mathbf{4 0 4 0}^{(2)} \end{gathered}$ |
|  | 4 P | 97234040 |  |  |  |  |

(1) $1 x \# 6-300 \mathrm{MCM}$.
(2) $1 x \# 6-600 \mathrm{MCM}$.

## Accessories

## Terminal screens

Use
Top and bottom protection against direct contact with terminals or connection parts.

| Rating (A) | No. of poles | Position | Reference |
| :---: | :---: | :---: | :---: |
| $100 \ldots 200$ | $2 / 3 \mathrm{P}$ | top / bottom | $4158 \mathbf{3 0 2 1}$ |
| $100 \ldots 200$ | 4 P | top / bottom | $4158 \mathbf{4 0 2 1}$ |
| $260 \ldots 400$ | $2 / 3 \mathrm{P}$ | top / bottom | $4158 \mathbf{3 0 4 1}$ |
| $260 \ldots 400$ | 4 P | top / bottom | $4158 \mathbf{4 0 4 1}$ |

For upstream and downstream protection, order the reference once.

41584041


## Bridging bars

## Use

For bridging power terminals on the top or bottom side of the switch.
When ordering one reference is required per switch.

| Rating (A) | No. bridging bar | Reference |
| :---: | :---: | :---: |
| $100 \ldots 200$ | 2 | $4159 \mathbf{2 0 2 1}$ |
| $100 \ldots 200$ | 3 | $4159 \mathbf{3 0 2 1}$ |
| $100 \ldots 200$ | 4 | $4159 \mathbf{4 0 2 1}$ |
| $260 \ldots 400$ | 2 | $4159 \mathbf{2 0 4 1}$ |
| $260 \ldots 400$ | 3 | $4159 \mathbf{3 0 4 1}$ |
| $260 \ldots 400$ | 4 | $4159 \mathbf{4 0 4 1}$ |



41594021

## Accessories (continued)

Auxiliary contacts (additional)

## Use

Pre breaking and signalling of positions
(Note : The motorization includes $3 \times \mathrm{NO}$ I and II: Each reference provides a single NO/NC contact. position auxiliary contacts as standard)

| Rating (A) | Designation | Reference |
| :---: | :---: | :---: |
| $100 \ldots 400$ | NO / NC | $4159 \mathbf{0 0 2 1}$ |
| $100 \ldots 400$ | Low level NO / NC | $4159 \mathbf{0 0 2 2}$ |



A maximum of 2 Aux contacts per position may be added.

## Spares

Motorization module

$\left.$| Used for ATyS reference |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | | Ref. Spare part |
| :---: |
| motorization | \right\rvert\,



Terminals lugs (in/mm)

ATyS from 100 to 200 A

sirco_115_b_1_us_cat


## Mounting orientation

ATyS 100 to 400 A

## ATyS UL 1008

Motorized Transfer Switching Equipment
from 100 to 400 A

Characteristics according to UL 1008 (Optional standby) 100 to 400 A

| Frame | B4 |  | B5 |  |
| :---: | :---: | :---: | :---: | :---: |
| General use rating | 100 A | 200 A | 260 A | 400 A |
| Operation voltage | 600 | 600 | 600 | 600 |
| Short circuit rating with ANY CIRCUIT BREAKER (kA/ms) | 10/25 | 10/25 | 14/50 | $14 / 50$ |
| Short circuit rating at 600 VAC (kA) ${ }^{(1)}$ | 100 | 100 | 65 | 65 |
| Type of fuse ${ }^{(1)}$ | J | J | J | J |
| Max. fuse rating (A) ${ }^{(1)}$ | 100 | 200 | 260 | 400 |
| Operational power / current max Operational 1 ph |  |  |  |  |
| 240 VAC Total system (A) | 100 | 100 | 260 | 400 |
| 240 VAC Resistive load (A) | 100 | 200 | 260 | 400 |
| Operational power / current max Operational 3 ph |  |  |  |  |
| 240 VAC Total system (A) | 100 | 200 | 260 | 400 |
| 240 VAC Resistive load (A) | 100 | 200 | 260 | 400 |
| 480 VAC Total system (A) | 100 | 100 | 260 | 400 |
| 480 VAC Resistive load (A) | 100 | 200 | 260 | 400 |
| 600 VAC Total system (A) | 100 | 100 | 200 | 200 |
| 600 VAC Resistive load (A) | 100 | 200 | 260 | 400 |
| Mechanical endurance |  |  |  |  |
| Endurance (number of operating cycles) | 6050 | 6050 | 6050 | 6050 |
| Connection terminals |  |  |  |  |
| Min. conncetion section / AWG | \#6 | \#6 | \# $4 / 2 \times 1 / 0$ | \# $4 / 2 \times 1 / 0$ |
| Max. connection section / AWG | 300MCM | 300MCM | 600MCM / $2 \times 350 \mathrm{MCM}$ | 600MCM / $2 \times 350 \mathrm{MCM}$ |

## Aux Power Supply

Supply voltage VAC $50 / 60 \mathrm{~Hz} \mid \quad$ 208-277 VAC

## Switching time

| I to II or II to I (s) |  |
| :--- | :---: |
| I to 0 or 0 to II (s) | 1.3 |
| Duration of electical blackout (s) | 0.85 |

(1) Note: Short circuit data given above with fuses is for general info only.

These tests are currently pending UL 1008 certification.

Terminals and connections


1 preferred source (transformer or generator)
2 alternate source (transformer or generator)
1 : position 0 control (contactor logic if closed)
2: position I control
3: position II control
4: position 0 priority control
5: closure of this contact enables the position control orders
6 : product availability relay
7: auxiliary contact, closed when the switch is in position II
8: auxiliary contact, closed when the switch is in position I
9: auxiliary contact, closed when the switch is in position 0

Dimensions (in/mm)
100 to 400 A


## Minimum enclosure dimensions recommended



# Enclosed transfer switch solutions 

## ATS no-break Bypass solution <br> ATSE* - Automatic equipment from 40 to 3200 A



## Function

- Automatic transfer of two supply sources to ensure continuity of supply to critical loads such as sprinklers, elevators, water pumps..
- Guaranteed continuity of the power supply during maintenance and test operations.
- Complete isolation of the Automatic Transfer Switch ensuring maintenance safety.
- The association of an ATyS along with a remote interface D20, will enable an easy configuration, exploitation and visualisation of the data shown on the front of the equipment (timers settings, hysterisis, start/ stop of the genset...).


## The solution for

Data centres
$>$ Power production
> Healthcare buildings
$>$ High-rise buildings
$>$ Banking and Insurance
$>$ Transportation


## Strong points

> No-break load transfer in Bypass mode
$>$ Solution certified by a manufacturer
> Optional accessories available

## Conformity to standards

$>$ IEC 61439-2
$>$ IEC 60947-6-1
$>$ IEC 60947-3
BS 60947-6-1

General characteristics

- From 40 to 3200 A - 4 poles.
- 230/400 VAC +/- 20\%, $50 / 60 \mathrm{~Hz}$, self-powered from incoming sources.
- Normal/Emergency logic control sequence.
- Voltage and frequency checking of networks I and II.
- Control of phase rotation.
- 1 configurable output relay for generator start/stop command.
- Position I, 0, II control by external dry contact.
- Manual emergency operation.
- Auxiliary contacts.
- MODBUS communication (factory fitted).
- AUTO / MANU selector.
- Equipment protection degree: IP41 as standard - Other IP upon request.
- Hinged door.
- Wall mounting brackets supplied up to 160 A.
- Floor standing feet from 250A to 3200 A.
- Plug-in ATS from 160 A.
- Phase identification.
- Mimic panel (3 LEDs; source availability (1 and 2) and load; 16 LED mimic panel optional).
- Integral protection against direct contact on each functional unit.
- Steel enclosure
- Colour: RAL 7035.


## 2 versions

## Single Line ATS Bypass

- It consists of 2 functions: an automatic transfer switch and a single Bypass line connected to the preferred supply source.


## Double Line ATS Bypass

- It consists of 3 functions: an automatic transfer switch, an ATS Bypass and a facility for selecting between supply sources when in Bypass.

ATS Bypass - SINGLE LINE


ATS Bypass - DOUBLE LINE


## Use

## Normal Position:

- The load is supplied by the supply source defined as the preferred source. In case of primary source failure, the ATS automatically transfers the load to the alternate source when available.


## Bypass position:

- ATS seamless transfer to the Bypass mode is achieved using the bypss line via Q1 to ensure continuity in the power supply to the load. Switch Q2 is then open to provide complete isolation from the power supply sources and to ensure safe interventions.


## Test Position:

- From the Bypass position, changeover switch Q2 can be closed to supply the ATS and achieve operational checks, without jeopardizing the supply to the load. Transfer to the normal position can then be achieved.


## References

Standard product - 230 VAC for ATyS p M

| Rating (A) | No. of poles | Single Line <br> Reference | Double Line <br> Reference |
| :--- | :---: | :---: | :---: |
| 40 | 4P | $1785 \mathbf{4 0 0 4}$ | 17864004 |
| 63 | 4P | $1785 \mathbf{4 0 0 6}$ | 17864006 |
| 80 | 4 P | $1785 \mathbf{4 0 0 8}$ | 17864008 |
| 100 | 4P | $1785 \mathbf{4 0 1 0}$ | 17864010 |
| 125 | 4P | $1785 \mathbf{4 0 1 2}$ | 17864012 |

Standard product- 230 VAC for ATyS p

| Rating (A) | No. of poles | Single Line Reference | Double Line Reference |
| :---: | :---: | :---: | :---: |
| 160 | 4 P | 17854016 | 17864016 |
| 250 | 4 P | 17854025 | 17864025 |
| 400 | 4 P | 17854040 | 17864040 |
| 630 | 4 P | 17854063 | 17864063 |
| 800 | 4 P | 17854080 | 17864080 |
| 1000 | 4 P | 17854100 | 17864100 |
| 1250 | 4 P | 17854120 | 17864120 |
| 1600 | 4 P | 17854160 | 17864160 |
| 2000 | 4 P | 17854200 | 17864200 |
| 2500 | 4 P | 17854250 | 17864250 |
| 3200 | 4 P | 17854320 | 17864320 |

## Enclosed transfer switch solutions

ATS no-break Bypass solution
ATSE - Automatic equipment from 40 to 3200 A

## Accessories

Customer fit

| Description | Reference |
| :--- | :--- |
| 2 inputs / 2 outputs module (ATyS p only) | 15992001 |

## Extension cabinet

Use
From 1250A to 3200 A, the standard enclosed ATS Bypass is supplied with connections to allow for Bottom/Bottom or Bottom/Top cable entry.
In order to facilitate the wiring, we propose the use of an extension cabinet, which can be mounted to the side of the standard ATS Bypass enclosure, when utilising all other types of connections (TT/TB/BT). The extension cabinet also enables any necessary future adaptation.

| Padlockable handle in position 0 | Reference |
| :--- | :--- |
| $1250 \ldots 2000$ | 15999004 |
| $2500 \ldots 3200$ | 15999005 |

## Protection against overvoltages

## Use

In order to ensure protection against For more information, please see our general
overvoltages of the equipment, type 1 and 2 surge protection is available. catalogue or our website www.socomec.com.

| Rating (A) | Reference |
| :--- | :--- |
| $40 \ldots 125$ | 15999016 |
| $250 \ldots 400$ | 15999017 |
| $630 \ldots 3200$ | 15999018 |

Multifunction meter
Use
Multifunction meters are now available for the display and monitoring of all the electrical parameters.

For more information, please see our general catalogue or our website www.socomec.com.


## Engine Exerciser

Use
The enclosed ATS Bypass up to 125 A can be supplied with a genset exerciser. (configure generator Start/Stop times, enable/disable routines, etc....).

| Description | Reference |
| :--- | :--- |
| Engine Exerciser | 15999006 |



Tinned Busbars

| Use | Rating (A) | Reference |  |
| :--- | :--- | :--- | :--- |
| Tinned busbar option for severe | 250 | 15999007 |  |
| environmental conditions. | 400 | 15999008 |  |
|  | 630 | 15999009 |  |
|  | 800 | 15999010 |  |
|  | 1000 | 15999011 |  |
|  | $1250 \ldots 1600$ | 15999013 |  |
|  | 2000 | 15999014 |  |
|  | $2500 \ldots 3200$ | 1599 | 9015 |

## Signalling

## Use

To get a global overview of the system status, an optional 16 LED mimic panel is available (voltage availability per phase and device positions).

Mimic panel
Single Line Double Line

| Rating (A) | Single Line <br> Reference | Double Line |
| :--- | :--- | :--- |
| Reference |  |  |



Dimensions
from 40 to 160 A

atys_749_c_1_gb_cat
Wall mounting - Bottom

| Rating <br> (A) | Recommended <br> connection <br> cross-section $\left(\mathbf{m m}^{\mathbf{2}}\right)$ | $\mathbf{H}$ <br> $\mathbf{( m m )})$ | $\mathbf{W}$ <br> $\mathbf{( m m )}$ | $\mathbf{D}$ <br> $\mathbf{( m m )}$ | $\mathbf{M}$ <br> $(\mathbf{m m})$ | $\mathbf{N}$ <br> $(\mathbf{m m})$ | Weight <br> $\mathbf{( k g )}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 10 | 800 | 800 | 300 | 848 | 752 | 80 |
| 63 | 16 | 800 | 800 | 300 | 848 | 752 | 80 |
| 80 | 25 | 800 | 800 | 300 | 848 | 752 | 80 |
| 100 | 35 | 1000 | 800 | 300 | 848 | 752 | 80 |
| 125 | 50 | 1000 | 800 | 300 | 848 | 752 | 80 |
| 160 | 70 | 1000 | 800 | 400 | 848 | 752 | 160 |

$\geq 250 \mathrm{~A}$


| Rating (A) | Recommended <br> connection <br> cross-section $\left(\mathbf{m m}^{\mathbf{2}}\right)$ | $\mathbf{H}$ <br> $\mathbf{( m m )}$ | $\mathbf{W}$ <br> $\mathbf{( m m )}$ | $\mathbf{D}$ <br> $\mathbf{( m m )}$ | Weight <br> $\mathbf{( k g )}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 250 | 70 | $1200^{(1)}$ | 1000 | 550 | 180 |
| 400 | 240 | $1200^{(1)}$ | 1000 | 550 | 200 |
| 630 | $2 \times 185$ | $1600^{(1)}$ | 1200 | 600 | 600 |
| $800 \ldots 3200^{(2)}$ |  |  |  |  |  |

(1) Add 100 mm mm for feet.
(2) Please consult us.

Connection (input / output)

- From 40 to 125A (B/B or T/B or T/T or B/T),
- From 160 to $400 \mathrm{~A}(\mathrm{~B} / \mathrm{B}$ or $B / T$ ),
- 630 A (B/B),
$\bullet \geq 800 \mathrm{~A}$ (Please consult us).



## TSE technical guide

The applications ..... p. 112
Types of transfer switching ..... p. 113
The sources ..... p. 114
The loads ..... p. 114
Typical electrical diagrams ..... p. 115
Automatic transfer ..... p. 126
Specific applications ..... p. 128
IEC 60947-6-1 standard ..... p. 129

# Transfer Switching Equipment (TSE) in LV installations 

## The applications

## Introduction

The word transfer is applied to any application requiring a switching operation from one power circuit to another.
The transfer concept is mainly applied to two sources requiring changeover, one considered as a main power supply and the other one as an alternate source or backup supply.

The expression 'normal/emergency' is used to name this backup function. The most useful transfer application concerns installations requiring switching to an alternate power supply in case of loss of the main's network (electricity provider, hospital,...).
Another typical application is "Genset/Genset", and this is when the load is supplied by two generators.

## Normal/emergency applications

Mains/Genset application


Mains/Mains application


Genset/Genset application

'Normal/emergency' applications are dedicated to safety installations. They ensure continuity in the supply to the loads and facilitate evacuation of the building for security matters. Typical safety equipment include lighting, alarm systems (fire..), smoke extraction systems, fire pumps, air compressors, sprinkler systems, lifts, ...

## Other typical applications

## Switching between loads



Switching the power supply from one load to another generates redundancy with a balanced operating time for the two loads.

## Earthing



Safely isolating a load from the supply whilst earthing equipment such as motors or electrical lines. This enables work to be carried out downstream of the transfer switch in total safety.

Phase and rotation inversion on motors


Inversion between two out of three phases supplying a motor in order to modify the direction of rotation. This application requires a delay in the off position to prevent damage to the equipment.

Bypass



Isolation of the a transfer switch, a UPS or other equipment for scheduled maintenance or tests. This is done by safely disconnecting upstream and downstream circuits, whilst continuing to supply the load via a parallel circuit referred to as a Bypass circuit.

## Types of transfer switching

## Break before make (Open Transition)

The transfer from one source to a second source goes through a 0 position to ensure that the main and alternate source do not overlap. An off time can be counted down to allow the load residual voltage to decrease below a non critical value before transferring. Transferring the load too quickly to another source can lead to power transfers between the load and the supply, which often cause damage. This can potentially damage sensitive equipment and cause protection devices to trip. The 0 position is a stable safe off position, which enables work to be carried out downstream of the transfer switch in safely once padlocked. The off time delay setting should be configured according to the equipment installed.
The international standard IEC 60947-6-1, dedicated to transfer switching equipment, states that any time delay or off-time provided in the total operating transfer time, from the normal to the alternative or the alternative to the normal supply, shall not be less than 50 ms . For applications that require a faster transfer time it is recommended to include adequate measurement and protection in the installation. Typically sync check relays. If this time is not respected, then the installation must have adapted synchronisation and protection functions.

Positions

T


0

II

atys_856_b

SOCOMEC transfer switching equipment is designed as open transition that meets the requirements for most applications.
In fact for most applications the backup supply is rarely a hot standby (example a genset needs to be started) whilst critical loads are usually supplied through a UPS.

## Closed transition (Synchronous transfer)

Depending on the local network regulations the normal and the alternative source may temporarily run in parallel for a a period of $<100 \mathrm{~ms}$. This is typically used for scheduled transfers, for example returning to the Normal source from the alternative source.
To allow a synchronised transfer the two sources must be in sync to allow the transfer:

- Their phases angles must be in phase (less than a $5^{\circ}$ difference).
- Their frequency and amplitudes are virtually identical (less than 0.2 Hz and $5 \% \mathrm{~V}$.
When synchronised within these limits a scheduled or return to normal supply transfer may take place without a blackout time allowing continuity of service.
When the Normal source is lost, or the power supplies cannot be synchronised (out of limits explained above) the transfer is carried out in open transition.


## Positions

$\square$



II

$\sigma^{-} \angle 98^{-544]}$

## Asynchronous Transfer

This type of transfer mode is typically applicable to applications with large asynchronous motor loads. A fast open transition transfer is used to allow a direct transfer without having to stop the motor. This transfer time is usually less than 50 ms and achievable safely when using a transfer switch coupled with a sync check relay. Although the transfer is carried out in open transition without overlapping contacts, the same conditions (in terms of voltage, phase angle and phase angle) as with closed transition apply.

Positions


$=$ rapid transfer

## The sources

## Types of sources

The source supplies can be described as follows:

- One source considered as priority (normal source): a power grid/ network through one or several transformers in parallel. Possible source redundancy can be achieved using an alternative source to ensure continuity of power in case of the normal supply failure.
- One alternative (backup source): a power generating plant (gensets, turbines, fuel cells, UPS, wind farms, ...)



## Classification of safety power supplies

In accordance with the standard NFC 15-100, governing Low voltage electrical installations, a safety power supply allows devices critical for personal safety to be kept in operational condition. This type of power supply is categorised as follows:

| Category | Transfer time |
| :--- | :--- |
| No shutdown | Continuous power supply |
| Short shutdown | $\leq 0.5 \mathrm{~s}$ |
| Medium shutdown | $\leq 10 \mathrm{~s}$ |
| Long shutdown | $>10 \mathrm{~s}$ |

## The loads

The transfer mode and the type of emergency sources to use are linked to the loads available.

## Load criticality and sensitivity

Loads can generally be classified by two main criteria; their criticality,
i.e. whether or not they require backup power, and their sensitivity, i.e.
the blackout time permitted.

Various categories have been identified:

- Critical equipment that can not accept shutdown. They are supplied by a UPS to ensure service continuity in case of main's supply shutdown. Their power capacity is limited and depends on the load's consumption, the battery level of charge and maintenance.
- Essential equipment: a fast return of power is required (from a few seconds to several minutes).
- Non-essential equipment: only powered back on after the normal supply returns and transfer back from the alternative to the main supply is done.


## Example of load criticality: NFC 15211

Installations in medical premises

|  | Shutdown |
| :--- | :--- |
| Level 1: Surgical room, intensive care... | None |
| Level 2: Postsurgical Monitoring ... | $<15$ sec |
| Level 3: Radiology ... | 15 sec to 30 min |



## Typical electrical diagrams

The following diagrams offer technical solutions based on SOCOMEC transfer switches, in order to meet most of the ATS installation diagrams made with others technologies.

## Choosing the right changeover switch

Socomec changeover switches aim at ensuring ever more efficient ways to guarantee the continuity of distribution and, therefore, the rate of availability of your energy.
Those changeover switches can be used not just for Normal/ Backup operation, but also for managing the switching of loads or the connection of equipment to earth.
In addition to the rating and the related electrical breaking specifications, the selection criteria are:

- type of control
- installation restrictions inside the enclosure

Furthermore, these solutions based on open transition switching and integrating interlocking, guarantee there will be no overlapping between the Normal source and the alternative source.

## Glossary



Transformer


CL Critical load

NCL Non-critical load

Typical solution: circuit breaker, contactor switch or motorised switch
Socomec Solution: motorised switch


Protection are not shown on the following diagrams

## Transfer between 2 sources - 1 busbar

S1 (kVA) = S2 (kVA)

Typical solution


SOCOMEC solution


COMUT 042 A FR

Truth table

| S1 | S2 | Typical solution | SOCOMEC | Load |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | X: | X: | Not supplied |
| 0 | 1 | $P 2$ | Q2 | Supplied |
| 1 | 0 | $P 1$ | Q1 | Supplied |
| 1 | 1 | $*$ | $*$ | Supplied |

* depends on the preferred source

Advantages of the Socomec solution

## Operation

- Only one emergency handle
- Secured padlocking system


## Implementation

- Only one product (built-in solution)
- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in


## SOCOMEC products

Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p



## Genset/Genset

- ATyS d M, ATyS r or ATyS d, ATyS S + C40

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30



## Transfer between 2 sources - 2 busbars

## 1) Sources are usually 1 transformer and 1 genset: loads are split between critical and non critical

First type of architecture: S1 (kVA) > SG (kVA)

## Typical solution



## SOCOMEC solution



Second type of architecture: S1 (kVA) > S2 (kVA)

## Typical solution



SOCOMEC solution

wumul 046 A

Truth table

| T1 | G | Typical solution | SOCOMEC | NCL | CL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | X: | X: | Not supplied | Not supplied |
| 0 | 1 | P2 | Q2 | Not supplied | Supplied |
| 1 | 0 | P1 +P3 | Q1 | Supplied | Supplied |

## Transfer between 2 sources - 2 busbars (continued)

2) Sources are 2 transformers: loads are not differentiated

S1 (kVA) = S2 (kVA)

## Typical solution



SOCOMEC solution


Truth table

| T1 | T2 | Typical solution | SOCOMEC | Loads |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | X: | X: | Not supplied |
| 0 | 1 | $P 2+P 3$ | Q2 + Q3 | Supplied |
| 1 | 0 | $P 1+P 3$ | $Q 1+Q 4$ | Supplied |
| 1 | 1 | $P 1+P 2$ | $Q 1+Q 2$ | Supplied |

## Advantages of the Socomec solution

## Operation

- Only one emergency handle (2 in the last case)
- Secured padlocking system
- In the first case (between transformer and genset), a motorised switch can be added on the Non Critical Loads for optional disconnection


## Implementation

- Fewer products
- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in


## SOCOMEC products

## Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models $t, g$ or $p$

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30



## Motorised switch as an option on Non Critical Loads

- SIRCO MOT AT



Transfer between 2 sources - 3 busbars

1) Sources are 2 transformers

S1 (kVA) = S2 (kVA)

## Typical solution



SOCOMEC solution


8
0
0
0
5
0
0

Truth table

| $T 1$ | T2 | Typical solution | SOCOMEC | CL | NCL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | X: | X: | Not supplied | Not supplied |
| 0 | 1 | $P 2+P 3$ | Q3 +Q4 | Supplied | Not supplied |
| 1 | 0 | $P 1+P 3$ | $Q 1+Q 2$ | Supplied | Not supplied |
| 1 | 1 | $P 1+P 2+P 4$ | $Q 1+Q 4+Q 5$ | Supplied | Supplied |

## 2) Sources are 1 transformer and 1 genset:

S1 (kVA) > S2 (kVA)
Typical solution SOCOMEC solution


Truth table

| T1 | G | Typical solution | SOCOMEC | CL | NCL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | X: | Not supplied | Supplied |  |
| 0 | 1 | $P 2+P 3$ | Q2 |  |  |
| 1 | 0 | $P 1+P 3+P 4$ | Not supplied | Not supplied |  |

## Transfer between 2 sources - 3 busbars (continued)

Advantages of the Socomec solution

## Operation <br> Implementation

- Only 2 or 3 emergency handles instead of 4

Redundancy of P3

- Secured padlocking system
- In the second case (between transformer and genset), a motorised switch can be added on the Non Critical Loads for optional disconnection
- Fewer products
- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in

SOCOMEC products

Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p


Motorised switch as an option on Non Critical Loads

- SIRCO MOT AT

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30


Transfer between 2 sources - 4 busbars

1) Sources are 2 transformers

S1 (kVA) = S2 (kVA)

## Typical solution



SOCOMEC solution


## Truth table

| $T 1$ | T2 | Typical solution | SOCOMEC | CL | NCL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | X: | X: | Not supplied | Not supplied |
| 0 | 1 | $P 2+P 3$ | Supplied | Not supplied |  |
| 1 | 0 | $P 1+P 3$ | Q1 + Q4 | Supplied | Not supplied |
| 1 | 1 | $P 1+P 2+P 4+P 5$ | $Q 1+Q 2+Q 5+Q 6$ | Supplied | Supplied |

## Advantages of the Socomec solution

## Operation

- Only 4 emergency handles instead of 5
- Redundancy of P3
- Secured padlocking system


## Implementation

- Fewer products
- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in


## SOCOMEC products

Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p


Motorised switch as an option on Non Critical Loads

- SIRCO MOT AT

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30


Transfer between 3 sources - 1 busbar
S1 (kVA) = S2 (kVA) = SG (kVA)

## Typical solution



## SOCOMEC solution



Truth table
Standard solution

| T1 | T2 | G | Typical solution | SOCOMEC | Load |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | X: | X: | Not supplied |
| 1 | 0 | 0 | P1 | Q1 + Q3 | Supplied |
| 0 | 1 | 0 | P2 | Q2 Q Q3 | Supplied |
| 0 | 0 | 1 | P3 | Q4 | Supplied |

Advantages of the Socomec solution
Operation

- Only 2 emergency handles instead of 3
- Secured padlocking system


## Implementation

- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in


## SOCOMEC products

## Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p



## Genset/Genset

- ATyS d M, ATyS r or ATyS d, ATyS S + C40

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30


Transfer between 3 sources - 2 busbars
First type of architecture: S1 (kVA) = S2 (kVA) > SG (kVA)

## Typical solution



SOCOMEC solution


COMUT 058 A

Second type of architecture: S1 (kVA) $=$ S2 (kVA) > SG (kVA)

Typical solution


SOCOMEC solution


COMUT 062 A

Truth table

| T1 | T2 | G | Typical solution | SOCOMEC | CL | NCL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | X: | X: | Not supplied | Not supplied |
| 1 | 0 | 0 | $P 1+P 4$ | $Q 1+$ Q3 | Supplied | Supplied |
| 0 | 1 | 0 | $P 2+P 4$ | Q2+Q3 | Supplied | Supplied |
| 0 | 0 | 1 | $P 3$ | Q4 | Supplied | Not supplied |

Transfer between 3 sources - 2 busbars (continued)
Third type of architecture: S1 (kVA) = S2 (kVA) >SG (kVA)

## Typical solution



SOCOMEC solution

cumui abia A

Truth table

| T1 | T2 | G | Typical solution | SOCOMEC | CL | NCL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $X:$ | $X:$ | Not supplied | Not supplied |
| 1 | 0 | 0 | $P 1+P 4$ | $Q 1+Q 4+Q 5$ | Supplied | Supplied |
| 0 | 1 | 0 | $P 2+P 4$ | $Q 3+Q 2+Q 5$ | Supplied | Supplied |
| 0 | 0 | 1 | $P 3$ | $Q 6$ | Supplied | Not supplied |
| 1 | 1 | 0 | $P 1+P 2$ | $Q 1+Q 2+Q 5$ | Supplied | Supplied |

Fourth type of architecture: $\mathrm{S} 2(\mathrm{kVA})>\mathrm{S} 1(\mathrm{kVA})$ et $\mathrm{S} 2(\mathrm{kVA})>\mathrm{S} 3(\mathrm{kVA})$

## Typical solution




COMUT 064 A

Truth table

| T1 | T2 | T3 | Typical solution | SOCOMEC | CL1 | CL2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $X:$ | X: | Not supplied | Not supplied |
| 1 | 0 | 0 | $P 1$ | Q1 | Supplied | Not supplied |
| 0 | 1 | 0 | $P 2+P 4$ | $Q 2+$ Q4 | Supplied | Supplied |
| 0 | 0 | 1 | $P 3$ | Not supplied | Supplied |  |
| 1 | 0 | 1 | $P 1+P 3$ | $Q 5+Q 1$ | Supplied | Supplied |

## Transfer between 3 sources - 2 busbars (continued)

Advantages of the Socomec solution

## Operation

- Only 2 or 3 emergency handles instead of 4 or 5
- A motorized switch can be added to the Non Critical Loads for optional disconnection
- Secured padlocking system


## Implementation

- Compact design
- Plug and Play
- Mechanical and electrical interlocking are built-in


## SOCOMEC products

## Mains/Mains - Mains/Genset:

- ATyS or ATyS M, models t, g or p


Motorised switch as an option on Non Critical Loads

- SIRCO MOT AT

- ATyS d M, ATyS r or ATyS d, ATyS S + C20 or C30



## Automatic transfer

## Introduction

The automatic transfer, commonly known as the "ATS Controller", can be either external to the transfer switching equipment, or integrated in the product. The main functions of these controllers, are listed below.

## Monitoring of voltages and frequency

Usually, controllers include at least the monitoring of voltages and frequencies.
Monitoring these values enable:

- A problem with the source to be detected if the voltage or frequency are outside of the limits (whether these are set by the controller or adjusted to customer requirements). The source will then be declared unavailable, and the sequence for transferring to the secondary source will be started.
- Validate the presence of the backup source to allow the transfer.


High and low thresholds with time delay define the stable power supply range of the load. High and low hysteresis levels are generally associated with a new stable condition.

## Monitoring of the phase rotation sequence

For certain applications, particularly rotating machine loads on threephase networks, it may be recommended that the direction of phase rotation is monitored. This monitoring will ensure that the direction of rotation of the two sources is consistent. If not consistent, the source will not be declared available.


Automatic transfer cycles

## Loss and return of the priority source

- Starting the cycle: the product is in the stable position on the priority source, and the latter is present.
- If the priority source has disappeared (end of the time delay): - If the secondary source is a transformer, the availability of this source is verified, then the transfer is initiated.
- If the secondary source is a generator, the generator starting order is sent before its availability is verified. Then the transfer is initiated.
- If the priority source returns, the controller checks whether it is actually deemed to be present before initiating the transfer back to it.
- If a generator is used as the secondary source, the generator starting contact is only stopped after a time delay has elapsed. This time delay starts counting after the product returns to the priority position. This allows for an a slow cooling down of the genset.



## Test cycles

## Test On Load

Many standards and circulars now require periodic tests to be carried out on electrical installations and equipment. Healthcare establishments are required by circular DHOS/E4 to have monthly tests of the normal and backup installations carried out and standard IEC 60364-7-710 requires annual operating tests of the changeover switches (standard dedicated to "Electrical installations of buildings - Requirements for special installations or locations - Medical locations").
With the ATS automated control, it is possible to run a test cycle on the transfer switching equipment. This test, commonly known as the test on load, simulates the loss of the priority network, starts the backup source and initiates the transfer sequence.


## Test Off Load

It is also possible to run a test cycle on the generator. This test, commonly known as the test off load, consists of sending a starting order to the generator, without switching the load.

## Engine Exerciser (Programmed periodic startup)

This function is used to programme on load or off load tests to a scheduled frequency (daily, monthly, annually), typically for scheduled maintenance. In addition, it is common that the test is activated periodically, by communication or via an external contact.

## Specific applications

## Automatic transfer inhibition

During normal operation, the controller takes over the product and manages the automation. In certain cases, (for example if a protection is triggered off upstream), it may be necessary to remotely intervene and prevent automatic operation. This is possible by activating a programmable contact on the ATS controller that is dedicated to the inhibition function to pause the automation.

## Changing to priority Source

The transfer applications between two transformers may require periodic reallocation of the priority source.
It is preferential in this case to try and preserve the same lifetime on both transformers and to determine the preferred source, based on the power consumption of the load together with the power capacity of the source.
This change in priority may be carried out locally via the product interface, remotely via a potential-free contact or via the communication.
Specific time and cycle sequences remain the same. Only the position considered as having priority is modified.

## Controlled transfer

Following a return to the priority source, the transfer back to it from the backup source may be initiated automatically or manually. The latter option enables controlled switching of the load. Therefore, the transfer remains blocked (load supplied by the backup source) whilst awaiting the external transfer order. The automatic sequence remains operational and initiates the transfer in case of loss of the emergency source.

## External Control of the positions

The Transfer system allows autonomous operation of the system. However, position of the switch can be activated remotely or via user handling. This control mode externally overrides the switch positions (I, $0, \mathrm{II}$, whilst taking over control of automatic operation.

## Return to position 0

In certain cases, depending on the type of switching equipment used, the controller may suggest a function returning to position 0 with no power supply (tripping). This function is used to protect the load in the event of an unstable source and to prevent on-load starting, if there are concerns about the generator.

## Load shedding

Normal and emergency supplies feeding the load are generally of a different type: Mains (transformer) or Generator (genset). Operation in emergency mode can authorise a partial feed back of connected loads (strategic loads only) and enable the backup source to have a lower power capacity than the nominal capacity of the Normal source.
A specific contact can be closed just before transferring the load to the emergency source, to enable previous load shedding. This contact is open after re-transfer from the backup source to the Normal source. The time delay from contact closure to transfer (load shedding timer) can be modified.


Changing to priority Source


Controlled transfer


External Control of the positions

## IEC 60947-6-1 standard

IEC 60947-6-1 International standard "Low-voltage switchgear and controlgear - Multiple function equipment - Transfer switching equipment" is dedicated to transfer switches.

This standard applies to all open transition transfer switching equipment (TSE) for power systems rated up to 1000 Vac . or 1500 Vdc . It covers:

- Manually operated transfer switching equipment (MTSE),
- Remotely operated transfer switching equipment (RTSE),
- Automatic transfer switching equipment (ATSE).

Transfer switching equipment is classified according to:

- The method of controlling the transfer: MTSE - RTSE - ATSE
- Their short-circuit capability
- Class PC: TSE that is capable of making and intended for withstanding short-circuit currents with and without a SCPD. Not intended for breaking short-circuit currents. (Contactors can only be used in class PC if they fulfill Class PC test req. (Icm ; Icw).
- Class CB: TSE that is capable of making withstanding and breaking short-circuit currents. Intended for breaking short-circuit currents.
- Class CC: TSE that is capable of making and withstanding short-circuit currents with a SCPD only. Not intended for breaking short-circuit currents.

The standard also defines some utilisation categories for TSE in compliance with the application needs:

| Nature of current | Utilisation category <br> Operation A | Operation B | Typical applications |
| :--- | :--- | :--- | :--- |
| AC-31A | AC-31B | Non-inductive or slightly inductive loads |  |
| Alternating current | AC-32A | AC-32B | Switching of mixed resistive and inductive loads, including moderate overloads |
|  | AC-33A | AC-33B | Motor loads or mixed loads including motors, resistive loads and up to 30\% of <br> incandescent lamp loads |

TSE assigned any utilisation category shall comply with the rated making and breaking capacity and the electrical and mechanical operational performance requirements corresponding to the assigned utilisation.
The designation of utilisation categories is completed by the suffix A or B , according to the number of operations required by the application.
To sum up:

- This standard is dedicated to transfer switching equipment and therefore guarantees that the products are «designed and tested» specifically for source changeover applications.
- Transfer switching equipment may come from different technologies that fall under their specific IEC standards:
- Circuit breakers: IEC 60947-2
- Switch disconnects: IEC 60947-3
- Contactor switch: IEC 60947-4-1
- The product markings on the sticker must make reference to the IEC standard for TSE: IEC 60947-6-1.



## References list

| References | Pages |
| :---: | :---: |
| 11xx xxxx | 16, 18 |
| 1309 0xxx | 37, 39, 41, 42 |
| 1309 2xxx | 37, 39, 42 |
| 1309 4xxx | 37, 39, 41, 42 |
| 1309 900x | 43 |
| 13099056 | 44 |
| 135x xxxx | 39, 43 |
| 13994006 | 37, 39, 41, 42 |
| 13994017 | 45 |
| 1400 102x | 16, 19, 92, 93 |
| 1400 103x | 16, 19, 92, 93 |
| 14001040 | 92,93 |
| 1401 0xxx | 18 |
| 1401 152x | 16, 19, 31, 92, 93 |
| 1401 153x | 16, 19, 31, 92, 93 |
| 14011540 | 31, 92, 93 |
| 1421 xxxx | 16, 18 |
| 14232113 | 16, 18 |
| 14232114 | 18 |
| 14232813 | 22 |
| 14290000 | 19 |
| 142D xxxx | 92,93 |
| $142 \mathrm{E} x \mathrm{xxx}$ | 93 |
| 142F xxxx | 93 |
| 142G xxxx | 93 |
| 14333113 | 18,31 |
| 143D 3113 | 92, 93 |
| 143D 38xx | 93 |
| 143 E xxxx | 93 |
| 143F xxxx | 93 |
| 143G xxxx | 93 |
| 14433113 | 16, 18 |
| 14433114 | 18 |
| 144D 3113 | 93 |
| 144D 3813 | 92,93 |
| 144E xxxx | 93 |
| 144F xxxx | 93 |
| 144G xxxx | 93 |
| 14538113 | 16, 18, 93 |
| 14548113 | 93 |
| 14930000 | 18 |
| 1499 xxxx | 22,31 |
| 15090001 | 69,73 |
| 150930 xx | 16, 21, 63, 65, 68, 70 |
| 150931 xx | 16, 21, 63, 65, 68, 70 |
| 15093200 | 63,65,68,70 |
| 1509 40xx | 16, 21, 31, 63, 65, 68,70 |
| 15094160 | 16, 21, 63, 65, 68, 70 |
| 15094200 | 63,65,68,70 |
| 152x xxxx | 73 |


| References | Pages | References | Pages | References | Pages |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15593 xxx | 65, 68, 72 | 3954 2xxx | 94, 102, 103 | 9503 4xxx | 53 |
| 15594012 | 72 | 3954 302x | 94, 102, 103 | 9503 5xxx | 55 |
| 15594013 | 65,68, 72 | 3954 304x | 94, 102, 103 | 9505 4xxx | 53 |
| 15594025 | 72 | 3954 306x | 94 | 9505 5xxx | 55 |
| 15594026 | 65,68, 72 | 3954 31xx | 94 | 9506 4xxx | 53 |
| 15594040 | 72 | 3954 402x | 94, 102, 103 | 9506 5xxx | 55 |
| 15594041 | 65,68, 72 | 3954 404x | 94, 102, 103 | 9509 000x | 55 |
| 15594063 | 72 | 3954 406x | 94 | 9509 001x | 71 |
| 15594064 | 65,68, 72 | 3954 41xx | 94 | 9509 002x | 71 |
| 15594080 | 72 | 4100 xxxx | 31 | 9509 004x | 71 |
| 15594081 | 65,68, 72 | 41090021 | 16, 20, 31 | 9509 006x | 71 |
| 15594120 | 72 | 41090320 | 20, 71 | 9509 008x | 71 |
| 15594121 | 65,68, 72 | 41091002 | 22, 31 | 9509 01xx | 71 |
| 15594160 | 72 | 41091004 | 22 | 9509 1xxx | 55 |
| 15594161 | 65,68, 72 | 41091006 | 22,31 | 95094013 | 53, 54 |
| 15594200 | 72 | 41092007 | 22 | 9509 5xxx | 76 |
| 15594201 | 65, 68, 72 | $41093 x x x$ | 16, 19, 63, 65, 68, 70 | 9513 4xxx | 53 |
| 1599 00xx | 63, 65, 68, 73 | 4109 401x | 16, 19, 31, 63, 65, 68,70 | 9513 5xxx | 55 |
| $159905 x x$ | 73 | 4109 402x | 16, 19, $31,63,65,68,70$ | 952x xxxx | 63 |
| 15992001 | 68,74, 108 | 4109 403x | 16, 19, 31, $63,65,68,70$ | 9533 xxxx | 63 |
| 15992009 | 45, 69, 75 | 41094050 | 16, 19, 63, 65, 68, 70 | 5392001 | 76 |
| 1599 3xxx | 87 | 4109 406x | 16, 19, $31,63,65,68,70$ | 9543 xxxx | 65 |
| 15994001 | 44, 75 | 4109 408x | 16, 19, 31, 63, 65, 68,70 | 9549 2001 | 76 |
| 15994064 | 63, 72 | 41094120 | 16, 19, 63, 65, 68, 70 | 9553 xxxx | 65 |
| 15994121 | 44 | 41094160 | 16, 19, 31, 63, 65, 68,70 | 95592001 | 76 |
| 15995 xxx | 69, 72 | 4150 xxxx | 92 | 9573 x | 68 |
| 1599 900x | 108 | 4158 xxxx | 92, 94, 102 | 9573 xxxx | 68,69 |
| 1599 901x | 108 | 41590021 | 94, 102, 103 | 95792001 | 76 |
| 1599 903x | 109 | 41590022 | 92, 94, 102, 103 | 9594 xxxx | 53, 54 |
| 16xx xxxx | 92, 94 | 4159 2xxx | 92,94,102 | 95990000 | 75 |
| 172x xxxx | 77 | 4159 302x | 92, 94, 102 | 95990003 | 63, 69, 73 |
| 176x xxxx | 77 | 4159 304x | 92, 94, 102 | 95990004 | 63, 69, 73 |
| 178x xxxx | 107 | 4159 306x | 92,94 | 95990005 | 56 |
| 18xx xxxx | 46 | 4159 308x | 92,94 | 95990006 | 56 |
| 192X 0056 | 72 | 4159 402x | 92, 94, 102 | 95990007 | 56 |
| 22944016 | 37, 39, 41, 42 | 4159 404x | 92, 94, 102 | 95990008 | 56 |
| 261x xxxx | 20,71 | 4159 406x | 92,94 | 9599 001x | 56 |
| 262x xxxx | 20,71 | 4159 408x | 92, 94 | 9599 002x | 56 |
| 263x xxxx | 20,71 | $41993 x x x$ | 93 | 9599 003x | 56 |
| 2694 3xxx | 16, 21, 63, 65, 68, 70 | 41994012 | 92, 93 | 95991004 | 69, 73 |
| 2694 4xxx | 16, 21,31, 63, 65, 68, 70 | 419970xx | 92 | 95991006 | 69,73 |
| 26991200 | 20,71 | 41997146 | 18 | 95991007 | 75 |
| $27993 x x x$ | 16, 19 | 41997149 | 93 | 95992010 | 41, 45, 75 |
| 2799700 x | 22 | 41Ax xxxx | 16 | 95992020 | 41, 45, 69, 75 |
| 27997012 | 18 | 42xx xxxx | 23 | 95994001 | 53, 54 |
| 27997042 | 16, 18, 93 | 48xx xxxx | 68,74 | 95994002 | 53, 54 |
| 27997052 | 16, 18 | 932x xxxx | 37 | 95994003 | 53, 54 |
| 2799 706x | 31 | 934x xxxx | 39 | 95994004 | 54 |
| 279971xx | 31 | 935x xxxx | 39 | 95995012 | 55 |
| 29xx xxxx | 21 | 936x xxxx | 41 | 970x xxxx | 103 |
| 35xx xxxx | 56 | 938x xxxx | 41 | 972x xxxx | 102 |

## Socomec worldwide

## IN EUROPE

## BELGIUM

Critical Power / Power Control \& Safety /
Energy Efficiency / Solar Power Power
Tel. +32 23400230
Fax +32 23462899
info.be@socomec.com

## FRANCE

Critical Power / Power Control \& Safety / Energy Efficiency / Solar Power
Tel. +33 145146300
Fax +33148673112
dcm.ups.ff@socomec.com

## GERMANY

Critical Power
Tel. +49 621716840
Fax +49 6217168444
info.ups.de@socomec.com
Power Control \& Safety / Energy Efficiency
Tel. +497243652920
Fax +49 72436529213
info.scp.de@socomec.com

## ITALY

Critical Power
Tel. +390298242942
Fax +39 0298240723
info.ups.it@socomec.com
Power Control \& Safety / Energy Efficiency
Tel. +39029849821
Fax +39 0298243310
info.scp.it@socomec.com
Solar Power
Tel. +39 0444598611
Fax +39 0444598627
info.solar.it@socomec.com

## NETHERLANDS

Critical Power / Power Control \& Safety /
Energy Efficiency / Solar Power
Tel. +31 307600900
Fax +31306372166
info.n@socomec.com

## POLAND

Critical Power / Solar Power
Tel. +48 228257360
Fax. +48 228257370
info.ups.pl@socomec.com
Power Control \& Safety / Energy Efficiency
Tel. +48 914426411
Fax +48914426419
info.scp.pl@socomec.com

## IN ASIA PACIFIC

## AUSTRALIA

Critical Power / Power Control \& Safety
Tel. +61 293253900
Fax +61 298889544
info.ups.au@socomec.com

## CHINA

Critical Power / Power Control \& Safety /
Energy Efficiency
Tel. +862152989555
Fax +86 2162283468
info.cn@socomec.com

## INDIA

Critical Power / Solar Power
Tel. +91 4439215400
Fax +91 4439215450 \& 51
info.ups.in@socomec.com
info.solar.in@socomec.com
Power Control \& Safety / Energy Efficiency
Tel. +911244027210
Fax +91 1244562738
info.scp.in@socomec.com

## SINGAPORE

Critical Power / Power Control \& Safety /
Energy Efficiency
Tel.+65 65067600
Fax +6564587377
info.sg@socomec.com

## THAILAND

Critical Power
Tel. +66 294116447
Fax +66 29411650
info.ups.th@socomec.com

## IN MIDDLE EAST

UNITED ARAB EMIRATES
Critical Power / Power Control \& Safety /
Energy Efficiency / Solar Power
Tel. +97142998441
Fax +97142998449
info.ae@socomec.com

IN AMERICA

USA, CANADA \& MEXICO
Power Control \& Safety / Energy Efficiency
Tel. +1 6172450447
Fax +1 6172450437
info.us@socomec.com
OTHER COUNTRIES
NORTH AFRICA
Algeria / Morocco / Tunisia
info.naf@socomec.com

## AFRICA

Other countries
info.africa@socomec.com
SOUTH EUROPE
Cyprus / Greece / Israel / Malta
info.se@socomec.com

## SOUTH AMERICA

Tel. +34 935407575
info.es@socomec.com
MORE DETAILS
waw.socomec.com/worldwide

## SOCOMEC GROUP

SAS SOCOMEC capital $10816800 €$
R.C.S. Strasbourg B 548500149
B.P. 60010-1, rue de Westhouse

F-67235 Benfeld Cedex - FRANCE
Tel. +33 388574141
Fax +33388740800
info.scp.isd@socomec.com


[^0]:    (1) The three-phase version (4P), for upstream and downstream protection, please order the reference twice. For the single-phase version (2P) please order the reference once.
    (2) 1 NO/NC contact block for positions I, $O$ and II.

[^1]:    (1) The three-phase version (4P), for upstream and downstream protection, please order the reference twice. For the single-phase version (2P) please order the reference once. (2) 1 NO/NC contact block for positions I, $O$ and II.
    (3) For 127/230 VAC networks, please contact your SOCOMEC office.

[^2]:    (1) The three-phase version (4P), for upstream and downstream protection, please order the reference twice.
    (2) 1 NO/NC contact block for positions I, $O$ and II.
    (3) For 127/230VAC networks, please contact your SOCOMEC office.

[^3]:    For complete conversion, order 3 times the reference.

[^4]:    1 preferred source
    2 alternate source

[^5]:    (1) Category with index $A=$ frequent operation -

    Category with index $B=$ infrequent operation.
    (2) For a rated operational voltage $U_{e}=400$ VAC.
    (3) Between the command given and reaching of position at $U_{n}$ (under nominal conditions).

[^6]:    (1) See "Copper bar connection kits" page 71

[^7]:    (1) Padlockable in all 3 positions.

